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ADDITIVES  FOR  GRAIN  SILAGES:  A  REVIEW
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ABSTRACT

Microbial inoculants have been used as a tool to improve the fermentation and aerobic stability (AS) of high moisture grain 
silages. To access the effects of additives in high moisture corn silages (HMCS), thirty-five scientific papers were reviewed. Other 
six scientific papers were used to investigate changes in winter cereal grain silages (HMWCS). Application of chemical additives 
in HMCS preserved WSC due to inhibition of fermentation. Yeast growth was efficiently controlled, reducing ethanol production 
and linearly increasing AS. The HMWCS treated with chemicals showed a marked reduction in fungal growth and in ethanol 
formation, and a higher AS. The inoculation of HMCS with homolactic bacteria decreased silage pH by 0.26 unit and decreased 
proteolysis, but did not promote AS. The HMCS inoculated with heterofermentative strains had lower WSC and higher content 
of weak acids with antifungal properties, reducing mold and yeast counts and increasing AS. Maximum improvement in AS was 
achieved when heterofermentative bacteria were applied at 4.67 × 105 cfu.g-1 (P < 0.01, R2 = 0.50). The combination of homo and 
heterofermentative bacteria in HMCS ensured a lower pH and decreased yeast counts and ethanol production, whereas AS was 
not changed. Since fermentative losses were usually low, we conclude that the use of chemical additives and heterofermentative 
bacteria are justified to improve AS of high moisture grain silages.

Key words: high moisture corn; winter cereals; microbial additives; chemical additives; aerobic stability

INTRODUCTION

Ensiling is an efficient strategy for grain storing 
and processing. Improvements on the nutritive value and 
the lower costs compared to other processing methods 
has stimulated the use of high moisture grain silages 
(HMGS). The typical lower field/harvesting losses 
accompanied by early harvesting are considered side 
advantages, which may increase farming efficiency. Insect 
and rodent damages typically observed in dry grains are 
also reduced by adopting HMGS. Additionally, HMGS 
allows the use of homegrown, traceable (source-verified) 
feedstuffs instead of purchased concentrates. However, 
it will constraint the cash crop at farm level because 
of the wet storage. 

To exploit the benefits of HMGS, a proper 
management is mandatory to minimize fermentative 
losses and prevent the aerobic deterioration. A number 
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of studies have accessed the effects of silage additives 
on HMGS, however, to our knowledge, a systematic 
analysis of these data has not been conducted. 

This review is focused on high moisture corn 
(HMCS) and winter cereals (HMWCS; barley, wheat and 
triticale) silages. The objective of this meta-analysis was 
to address the effect of chemical and microbial additives 
on the conservation of HMCS and HMWCS. 

MATERIAL  AND  METHODS

Two data sets based on a literature review were 
compiled from scientific papers that reported treatment 
means. Silages made from whole or processed grains 
were considered and the minimal storage period adopted 
was 30 days. To analyze the effect of applying additives 
on winter cereal silages (barley, wheat and triticale), 
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the data set included 3 referred journal articles (Adesogan 
et al., 2003; Mathison et al., 1989; Pieper et al., 2011) 
and 3 abstracts (Davies et al., 2009; Seppala et al., 2015; 
Stacey et al., 2009). The small number of publications 
found was due to the rare use of grain silages when 
compared to the production of whole plant silages.

The data set used to study high moisture corn 
silages was composed of 24 referred journal articles 
(Bíro et al., 2006; 2009; Canibe et al., 2013; Da Silva, 
T. et al., 2015; Dawson et al., 1998; Doležal and Zeman, 
2005; Dutton and Otterby, 1971; Ferrareto et al., 2015; 
Flores-Galarza et al., 1985;  Gálik et al., 2007; 2008; 
Ítavo et al., 2006; 2009; Jobim et al., 2008; Kung et al., 
2004; 2007; Loučka, 2010; Morais et al., 2012; Prigge 
et al., 1976; Pys et al., 2009; Reis et al., 2008; Taylor 
and Kung, 2002; Wardynski et al., 1993); one technical 
note (Basso et al., 2012) and 10 abstracts published in 
international scientific meetings on forage conservation 
(Auerbach et al., 2015; Coudure et al., 2012; da Silva 
N. et al, 2015; Davies et al., 2009; Doležal et al., 2014; 
Gallo et al., 2015; Mlynar et al., 2006; Pys and Kowalski, 
2014; Pys et al., 2010; Revello-Chion et al., 2012). 

Data sets of corn and winter cereals were 
analyzed separately. A minimal of four treatment means 
from at least two articles was the prerequisite for keep 
the dependent variable into the data set. Data were 
analyzed using the mixed procedure of SAS (Littell et 
al., 1996). The model included a fixed effect of treatment 
(control or additive) and random effect of experiment, 
due to the variations across experimental protocols that 
would contribute to study effects in these comparisons 
(St-Pierre, 2001).

Because the current knowledge indicates 
divergent responses for types of silage additives, 
they were sorted into different classes: “Homolactic” 
(homolactic bacteria), “Hetero” (heterofermentative 
bacteria), “Combo” (Homolactic plus heterofermentative 
bacteria) and “Chemical” (chemical additives). Despite 
of the scarcity of data for wheat, barley and triticale 
silages, only the consequences of heterofermentative 
bacteria and chemical additives in winter cereals silages 
were presented. 

RESULTS  AND  DISCUSSION

Untreated HMGS
Survey data from untreated HMCS showed 

a wide variation in moisture content (range of 232 g.kg-1 
to 397 g.kg-1) and an average storage time of 91 ± 54 d. 
Benton et al. (2005) reported increases in both total in situ 
dry matter digestibility (ISDMD) and degraded intake 
protein (DIP) when moisture level was increased in both 
high moisture corn (240 or 300 g.kg-1) and reconstituted 
corn (280 or 350 g.kg-1), with major variations in ISDMD 

and DIP occurring during the first 28 d after ensiling. 
Taylor and Kung (2002) showed fermentative changes 
in HMCS over the storage period. The control silages 
showed most WSC consumption during the first 14 d, 
culminating in pH values below 4.0. At 49 d, the highest 
N-NH3 value was recorded, which would be an indication 
of proteolysis caused by amino acid deamination 
(Oshima and McDonald, 1978). Specifically, Hoffman 
et al. (2011) working with different corn hybrids, found 
marked production of lactic acid and quick pH drop in 
the first 15 d of fermentation of a given hybrid without 
additives; however, for a second untreated hybrid, lactate 
quantification was possible only at day 30, besides 
the slow and gradual pH drop. For both hybrids, N-NH3 
and soluble protein levels increased with time for up 
to 240 d. 

Untreated HMCS can be characterized by a 
moderate fermentation when compared to whole plant 
corn silage. In this review, the average production of acids 
(lactic acid + acetic acid) was 20.0 ± 11.8 g.kg DM-1, 
with pH values varying between 3.73 and 4.95. These 
silages pointed a significant ethanol production (until 
28.4 g.kg DM-1), which would be an indication of the 
yeast metabolism (counts from 3.22 to 6.7 cfu.g FM-1). 

A wide range of moisture content was obtained 
in HMWCS (range of 256 to 461 g.kg-1) and silages 
were stored for 88 ± 30 d. Previous reports relate the 
importance of moisture in silages as described by Pieper 
et al. (2011), regarding the fermentation profile of triticale, 
barley and wheat silages at 250 g.kg-1 or 350 g.kg-1 
of moisture. In silages with higher moisture levels, 
pH declined within 3 days regardless L. plantarum 
inoculation.  Treated low moisture silages had a pH 
decline after 10 d of storage, however pH of untreated 
grains remained unchanged. Lactic acid, propionic acid, 
acetic acid and NH3 concentrations were also influenced 
(P < 0.01) by moisture content, showing a better pattern 
in silages with higher levels of moisture.

Winter cereals have a higher concentration of 
soluble carbohydrates in their composition, compared to 
corn. This greater availability of fermentable substrates 
may affect the effectiveness of additives during 
fermentation and feed-out phases. In this survey the 
average content of residual WSC observed in HMWCS 
without additives was 46.5 ± 28.0 g.kg DM-1 and the pH 
values ranged from 3.85 to 5.90. The average concentration 
of lactic acid plus acetic acid was 21.1 ± 13.2 g.kg DM-1, 
and the ethanol content ranged from 3.2 to 19.4 g.kg DM-1.

Additives to HMCS

Chemical additives
Chemical additives reported in the reviewed 

articles included in the final data set are shown 
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in Table 1, with the respective application rates as reported 
by the authors. While some compounds were used alone 
(pure compounds or solutions), most treatments were 
based on mixtures of chemical substances. 

High moisture grain silages with or without 
chemical additives displayed a large variation in 
chemical composition, DM loss, microbial counts and 
aerobic stability, indicating that the data set was broad, 
representative and covered a large part of the practically 
wide range of HMCS (Table 2). As expected, HMCS 
treated with chemical additives revealed a significant 
fermentation inhibition as indicated by the higher content 
of WSC and lower content of fermentation end-products, 
especially lactic acid.

Chemical additives were also effective in preventing 
DM losses, which explains the higher DM content of 
silages containing chemicals. Changes in variables 
such as ash, CP, N-NH3 and pH reflect the formulations 
of chemicals added to the silages. The presence of 
minerals in the chemicals altered the ash content of 
silages and the presence of nitrogenous compounds 
affected CP and N-NH3 concentration, in addition to the 
inhibitory effects on the microorganisms, preventing 
the pH drop.

A noticeable response achieved with chemical 
additives was the higher aerobic stability of silages, since 
spoiling microorganisms such as yeasts were markedly 
decreased. Higher stability associated with lower nutrient 
oxidation upon air exposure is a reasonable justification 
to recommend chemical additives for HMCS. 

Table 1:  Description of chemical additives used in the meta-analysis

	 Additive	 Application rate

	 Ammonia	 1.1 % to 2.3 %
	 Ammonium isobutyrate	 2 %
	 Diammonium phosphate	 4.6 %
	 Formic acid	 3 L.t-1 to 4 L.t-1

	 Sulfur dioxide	 1.3 % to 1.7 %
	 Urea	 0.4 to 2 %
	 Urea solution	 50 L.t-1

	 Acetic acid, isobutyric acid	 8 L.t-1

	 Ammonium formate, propionate, ethyl benzoate and benzoate	 4 L.t-1

	 Ammonium propionate, sodium propionate, acetic acid, benzoic acid and sorbic acid	 0.1 % to 0.2 %
	 Formic acid, ammonium formate, propionic acid, benzoic acid 	 4 L.t-1

	 Formic acid, ammonium formate, propionic acid, benzoic acid and ethylbenzoate	 6 L.t-1

	 Formic acid (42.5 %), formic ammonia (30.3 %) and propionic acid (10 %)	 6 L.t-1

	 Formic acid (55 %), propionic acid (20 %), ammonium formate (4.3 %) and potassium sorbate (2.5 %)	 4 L.t-1

	 Formic acid (55 %), propionic acid (5 %) and ammonium formate (24 %) 	 4 L.t-1 to 4.5 L.t-1

	 Formic acid (55 %), propionic acid (5 %) and ammonium formate (24 %) plus ammonium
	 Propionate	 4.5 L.t-1

	 Propionic acid (80 %) and acetic acid (20 %)	 1.5 %
	 Propionic acid  and formic acid	 3.5 kg.t-1

	 Propionic acid-based additive: ammonium and sodium propionate, ethoxyquin, BHA, and BHT	 0.1 to 0.2 %
	 Propionic acid (50 %) and formic acid (50 %)	 3 L.t-1

	 Propionic acid (90 %), ammonium propionate (4 %) and 1,2-propandiol (4 %)	 3 L.t-1

	 Propionic acid, ammonium propionate, sodium benzoate, potassium sorbate	 1.5 to 3 L.t-1

	 Propionic, acetic, benzoic and sorbic acids, sodium and ammonium hydroxide, 
	 methylparaben and propylparaben (Liquid mold inhibitor, 82 % acid content)	 0.1 %
	 Propionic acid, formic acid, benzoic acid and calcium formate	 3.4 kg.t-1

	 Propionic acid (37 %), sodium benzoate (14 %) and sodium propionate (11 %)	 5 L.t-1

	 Sodium benzoate (22.9 %) and sodium propionate (8.3%)	 3 L.t-1 to 6 L.t-1

	 Sodium benzoate (5 to 50 %), potassium sorbate (5 to 35 %) and sodium nitrite < 5 %	 2 L.t-1 to 6 L.t-1

	 Sodium benzoate, sodium azide and calcium formate	 3.5 kg.t-1

	 Potassium sorbate, sodium benzoate, ammonium propionate	 1 L.t-1 to 2 L.t-1
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Table 2:  Data set of high moisture corn silages treated without or with chemical additives and their effects 
	 on silage quality

					     Data set 				   Treatment effect

	 Item	 n1	 Mean	 SD	 Minimum	 Maximum	 Control	 Chemical	
SEM	 P

	 DM, g.kg-1	 62	 661.8	 38.2	 598.0	 748.0	 657.8	 665.8	 6.88	 0.02
	 Ash, g.kg DM-1	 26	 15.2	 1.49	 13.3	 19.1	 14.6	 15.8	 0.38	 0.01
	 NDF, g.kg DM-1	 24	 99.7	 6.79	 79.2	 107.0	 99.5	 99.9	 2.00	 0.59
	 ADF, g.kg DM-1	 24	 39.7	 12.3	 22.8	 57.4	 39.8	 39.7	 3.64	 0.85
	 Hemicellulose, g.kg DM-1	 24	 59.9	 11.9	 42.4	 76.2	 59.7	 60.2	 3.50	 0.35
	 Starch, g.kg DM-1	 40	 712.9	 51.8	 593.0	 796.7	 711.5	 714.3	 11.7	 0.44
	 Ether extract, g.kg DM-1	 14	 43.3	 8.33	 34.8	 66.2	 45.5	 41.1	 3.15	 0.36
	 CP, g.kg DM-1	 36	 95.8	 29.9	 57.3	 202.0	 88.9	 102.8	 6.95	 0.04
	 N-NH3, g.kg DM-1	 40	 0.54	 1.07	 0.00	 5.00	 0.33	 0.76	 0.24	 0.21
	 Soluble protein, g.kg CP-1	 6	 520.1	 21.7	 476.7	 531.8	 531.8	 508.3	 11.3	 0.28
	 WSC, g.kg DM-1	 20	 9.84	 3.97	 1.00	 15.2	 8.34	 11.3	 1.19	 < 0.01
	 pH	 74	 4.41	 0.72	 3.70	 8.30	 4.31	 4.51	 0.12	 0.08
	 Lactic acid, g.kg DM-1	 78	 12.4	 7.09	 0.20	 26.5	 14.0	 10.8	 1.11	 < 0.01
	 Acetic acid, g.kg DM-1	 78	 4.89	 2.84	 0.00	 16.0	 5.20	 4.57	 0.46	 0.15
	 Propionic acid, g.kg DM-1	 64	 1.02	 2.52	 0.00	 18.3	 0.16	 1.89	 0.42	 < 0.01
	 Butyric acid, g.kg DM-1	 24	 0.23	 0.26	 0.00	 0.70	 0.27	 0.18	 0.07	 0.23
	 Ethanol, g.kg DM-1	 58	 6.91	 9.05	 0.00	 44.0	 9.50	 4.32	 1.62	 < 0.01
	 Lactic:Acetic ratio	 78	 3.79	 3.33	 0.00	 11.3	 3.82	 3.77	 0.58	 0.88
	 LAB, log cfu.g-1	 6	 2.25	 0.23	 2.00	 2.45	 2.45	 2.04	 0.03	 0.01
	 Yeasts, log cfu.g-1	 20	 3.35	 1.19	 0.57	 4.69	 4.06	 2.65	 0.31	 < 0.01
	 DM losses2, g.kg-1	 10	 14.2	 11.9	 5.8	 41.0	 16.7	 11.8	 5.50	 0.11
	 Aerobic stability, h	 52	 125	 112	 21	 500	 59	 190	 18	 < 0.01
	 1Number of means, 2Fermentative losses.

Microbial additives
Nowadays, there is enough knowledge 

indicating divergent responses for homolactic and 
heterolactic microbial inoculants (Kung et al., 2003). 
Thus, homolactic, heterofermentative (including species 
of Propionibacteria) and combinations of homolactic 
and heterofermentative bacteria were evaluated 
separately. The microbial species used as silage inoculants 
are described in Table 3.  

Homolactic bacteria are recognized for their 
efficiency in producing lactic acid, which is a strong 
acid (pKa = 3.86) capable to quickly drop the pH 
decreasing fermentative losses. On the other hand, 
heterofermentative bacteria are skilled in ferment sugars 
(pentoses and hexoses) into other products besides 
lactic acid, for instance acetic and propionic acids. 
These weak acids are good antifungal agents able to 
promote aerobic stability in silages (Moon, 1983). 

Homolactic bacteria
Chemical composition, DM loss, microbial 

counts and aerobic stability of HMCS with or without 
homolactic inoculants are shown in Table 4. Nutrient 
compositions of HMCS were quite similar. Silages 
treated with the homolactic inoculants showed higher 
protein content and reduced ammonia content mainly 
due to the inhibition of proteolysis. 

Although the database did not provide quantification 
of LAB, there was a trend towards greater use of soluble 
carbohydrates in the inoculated silages. As a consequence 
of the typical metabolism of added bacteria, the lactic acid 
content was higher in silages inoculated with homolactic 
bacteria, and this difference promotes significant 
changes in pH. The DM losses have been numerically 
lower in inoculated silages, however, both control and 
treated silages had shown low fermentative losses. Low 
concentrations of other organic acids indicated that 
fermentation profile was generally shortly interrupted.
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Table 3:  Microorganisms used as silage inoculants in the current meta-analysis

	 Bacterium	 Inoculation rate (cfu.g-1 as fed)

	 Lactobacillus buchneri	 5 × 104 to 5 × 106

	 Lactobacillus fermentum	 1 × 105

	 Lactobacillus plantarum	 5 × 104 to 1 × 107

	 Leuconostoc mesenteroides	 1 × 105

	 Propionibacterium acidipropionici	 1 × 107

	 Propionibacterium freudenreichii	 1 × 107

	 L. buchneri and  L. plantarum 	 2.5 × 105 to 6 × 105

	 L. buchneri and P. pentosaceus	 7.5 × 105 to 9 × 105

	 L. plantarum and P. acidipropionici	 1.5 × 105 to 3 × 105

	 L. plantarum and P. freudenreichii	 1 × 105 to 1 × 107

	 L. rhamnosus and E. faecium	 1 × 105 to 5 × 105

	 P. pentosaceus and P. freudenreichii	 1.2 × 105 to 2.4 × 105

	 L. buchneri, L. plantarum and E. faecium	 5 × 106

	 L. plantarum, E. faecium, and P. acidilactici	 1.5 × 105 to 2 × 106

	 L. plantarum, P. pentosaceus and P. acidipropionici	 1.5 × 105

	 L. plantarum, L. bulgaricus and L. acidophilus	 1 × 105

	 L. plantarum, L. casei, E. faecium and P. pentosaceus	 5 × 104

	 L. buchneri, L. plantarum, E. faecium, L. casei, and P. pentosaceus	 1.5 × 105

	 L. buchneri, L. plantarum, L. brevis, L. rhamnosus and P. pentosaceus	 2.5 × 105

Unsurprisingly, homolactic inoculants were less 
effective in controlling aerobic deterioration, since lactic 
acid has a typical weak antifungal property (Moon, 
1983). The influx of air into the silage mass has negative 
effects on silage quality, especially in HMGS due to its 

high content of nutrients, low moisture, and because it 
ferments more slowly and less extensively compared 
to typical forage crop silages (Taylor and Kung, 2002). 
Nutrient losses and excessive production of heat by 
microbial spoliation result in lower feed quality and 

Table 4:  Data set of high moisture corn silages treated without or with homolactic inoculants and their effects
	 on silage quality

					     Data set 				   Treatment effect

	 Item	 n1	 Mean	 SD	 Minimum	 Maximum	 Control	 Homolactic	
SEM	 P

	 DM, g.kg-1	 28	 669.3	 54.9	 595.0	 768.0	 665.9	 672.5	 14.9	 0.13
	 Ether extract, g.kg DM-1	 6	 34.5	 3.37	 29.3	 38.4	 32.3	 36.7	 1.54	 0.18
	 CP, g.kg DM-1	 20	 85.7	 11.1	 66.0	 97.6	 84.5	 86.9	 3.57	 0.03
	 N-NH3, g.kg DM-1	 18	 0.26	 0.17	 0.10	 0.70	 0.20	 0.19	 0.04	 0.06
	 Soluble protein, g.kg CP-1	 4	 296.3	 119.1	 225.0	 473.0	 225.0	 367.5	 74.6	 0.41
	 WSC, g.kg DM-1	 8	 26.5	 10.8	 12.3	 37.4	 29.1	 23.9	 5.62	 0.12
	 pH	 24	 4.29	 0.48	 3.88	 5.65	 4.42	 4.16	 0.14	 0.02
	 Lactic acid, g.kg DM-1	 16	 24.5	 17.4	 8.80	 69.3	 21.4	 27.6	 6.25	 0.10
	 Acetic acid, g.kg DM-1	 16	 9.13	 9.14	 1.10	 28.7	 9.85	 8.41	 3.33	 0.40
	 Propionic acid, g.kg DM-1	 10	 0.77	 0.61	 0.00	 1.50	 1.00	 0.54	 0.27	 0.27
	 Ethanol, g.kg DM-1	 12	 7.85	 9.66	 2.70	 28.5	 8.23	 7.47	 4.13	 0.22
	 Lactic:Acetic ratio	 16	 3.96	 2.42	 1.64	 9.74	 3.02	 4.89	 0.81	 0.12
	 Yeasts, log cfu.g-1	 6	 4.77	 0.73	 3.92	 5.67	 4.76	 4.78	 0.47	 0.95
	 DM losses2, g.kg-1	 10	 17.4	 24.2	 4.60	 68.0	 18.3	 16.5	 11.5	 0.42
	 Aerobic stability, h	 4	 118	 27	 96	 156	  138	 98	 13	 0.27
	 1Number of means, 2Fermentative losses.
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Table 5:  Data set of high moisture corn silages treated without or with heterofermentative inoculants and their 
effects on silage quality

					     Data set 				   Treatment effect

	 Item	 n1	 Mean	 SD	 Minimum	 Maximum	 Control	 Hetero	
SEM	 P

	 DM, g.kg-1	 74	 698.9	 37.4	 629.5	 738.0	 700.7	 697.1	 6.19	 0.01

	 Ash, g.kg DM-1	 10	 14.0	 0.92	 12.7	 15.6	 14.0	 13.9	 0.44	 0.73

	 NDF, g.kg DM-1	 26	 78.2	 17.3	 55.3	 106.5	 78.3	 78.1	 4.89	 0.85

	 ADF, g.kg DM-1	 26	 26.9	 13.7	 10.4	 56.8	 26.9	 26.9	 3.87	 0.92

	 Hemicellulose, g.kg DM-1	 26	 51.3	 10.7	 38.6	 74.3	 51.5	 51.1	 3.02	 0.78

	 Starch, g.kg DM-1	 12	 740.2	 38.0	 687.0	 794.0	 739.8	 740.6	 16.3	 0.85

	 CP, g.kg DM-1	 32	 94.9	 11.6	 72.3	 109.6	 95.3	 94.5	 2.95	 0.48

	 N-NH3, g.kg DM-1	 64	 0.24	 0.21	 0.03	 0.81	 0.23	 0.26	 0.04	 0.02

	 WSC, g.kg DM-1	 38	 1.89	 2.51	 0.10	 10.8	 2.38	 1.41	 0.57	 < 0.01

	 pH	 66	 4.22	 0.43	 3.73	 5.65	 4.24	 4.20	 0.07	 0.39

	 Lactic acid, g.kg DM-1	 66	 13.5	 10.6	 1.40	 39.0	 13.8	 13.2	 1.87	 0.17

	 Acetic acid, g.kg DM-1	 66	 5.75	 4.21	 0.40	 27.1	 4.06	 7.44	 0.68	 < 0.01

	 Propionic acid, g.kg DM-1	 36	 0.37	 0.67	 0.00	 3.50	 0.10	 0.65	 0.14	 0.01

	 Butyric acid, g.kg DM-1	 8	 0.16	 0.24	 0.00	 0.60	 0.23	 0.10	 0.12	 0.19

	 Ethanol, g.kg DM-1	 46	 5.87	 4.92	 1.20	 18.0	 6.07	 5.67	 1.04	 0.25

	 Lactic:Acetic ratio	 66	 3.11	 2.95	 0.48	 10.9	 3.71	 2.51	 0.51	 < 0.01

	 LAB, log cfu.g-1	 6	 7.88	 0.54	 7.11	 8.46	 7.63	 8.13	 0.30	 0.34

	 Yeasts, log cfu.g-1	 46	 4.24	 1.34	 1.34	 6.70	 4.83	 3.65	 0.24	 < 0.01

	 Molds, log cfu.g-1	 30	 3.65	 1.98	 1.10	 7.29	 3.95	 3.36	 0.51	 < 0.01

	 DM losses2, g.kg-1	 16	 30.1	 10.4	 7.50	 41.0	 27.2	 33.0	 3.65	 0.07

	 Aerobic stability, h	 72	 129.0	 114	 20.0	 450	 70	 188	 16	 < 0.01
	 1Number of means, 2Fermentative losses.

may result in poor animal performance (Hoffman and 
Ocker, 1997; Salvo et al., 2015). This makes the use of 
exclusively homolactic microorganisms inappropriate 
for HMCS.

Heterofermentative bacteria
The characteristics of HMCS treated or not with 

heterofermentative inoculants are presented in Table 5. 
Overall quality of HMCS was typical for well-preserved 
silages, although DM and WSC contents, which are key 
factors for silage fermentation, showed a wide range.

Indeed, the production of antifungal compounds 
(e.g., acetic and propionic acids) by heterofermentative 
bacteria was an effective way for decreasing yeast 

and fungi population (Honing and Woolford, 1980) 
and largely improved the aerobic stability of HMCS. 
Silages inoculated with heterofermentative strains had 
lower WSC, indicating higher fermentative activity. 
Lactobacillus buchneri, a typical heterofermentative 
bacteria, has a predominant metabolic pathway leading 
to accumulation of acetic acid, whereas lactic acid 
concentration and pH, in general, remains similar to 
control silages. Furthermore, heterofermentative strains 
increase propionic acid as well, which might be produced 
either by the addition of Propionibacterium spp or by 
the degradation of 1,2-propanediol (Krooneman et al., 
2002) resulted from L. buchneri metabolism.

Review                                                                                                                                              Slovak J. Anim. Sci., 50, 2017 (1): 42–54
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Combination of homo- and hetero-fermentative bacteria
Chemical composition and fermentative 

characteristics of silages treated with both homo- and 
heterofermentative inoculants are presented in Table 6. 
Combo inoculants led to silages with higher protein 
content, whereas ammonia concentration tended (P = 0.11) 
to be lower, as observed for homolactic inoculants. 
According to Ferraretto et al. (2015), inoculation had no 
effect on CP of silages added or not with homolactic or 
heterofermentative bacteria; instead, CP values remained 
similar even with protease addition. In this review 
changes in the protein fraction were observed suggesting 
the importance of further studies aiming to investigate 
the influence of different microbial strains as their 
fermentative routes on silage proteolysis.

Silages treated with combo inoculants showed 
lower NDF content, which can be attributed to a higher 

hemicellulose disappearance (P = 0.10). It should be also 
noted that in the current meta-analysis, the inoculation 
with heterofermentative bacteria did not change 
the fibrous components of HMCS, most probably 
because none of the strains tested provided ferulic acid 
esterase activity.

The fermentation profile observed in silages 
treated with combo inoculants blended features 
from both homo- and hetero-fermentative bacteria. 
Inoculated silages had a greater consumption of 
soluble carbohydrates. In despite of the lower pH value 
attributed to the action of homolactic bacteria, treated 
silages had similar concentrations of lactic acid and 
higher levels of acetic and propionic acids than control 
silages. In turn, the presence of weak acids with 
antifungal properties reduced yeast counts and ethanol 
concentrations. Silages included in this data set generally 

Table 6:  Data set of high moisture corn silages treated without or with combinations of homo- and hetero-
	 fermentative bacteria and their effects on silage quality

					     Data set 				   Treatment effect

	 Item	 n1	 Mean	 SD	 Minimum	 Maximum	 Control	 Combo	
SEM	 P

	 DM, g.kg-1	 52	 685.3	 47.8	 596.3	 739.0	 686.2	 684.3	 9.46	 0.17

	 Ash, g.kg DM-1	 28	 14.0	 0.71	 12.7	 15.5	 13.8	 14.1	 0.19	 0.12

	 NDF, g.kg DM-1	 8	 100.1	 5.3	 91.1	 107.0	 101.6	 98.5	 2.72	 0.02

	 ADF, g.kg DM-1	 8	 40.9	 13.9	 27.3	 56.8	 41.2	 40.6	 7.51	 0.18

	 Hemicellulose, g.kg DM-1	 8	 59.2	 14.8	 39.7	 74.3	 60.4	 57.9	 7.95	 0.10

	 Starch, g.kg DM-1	 30	 718.7	 31.7	 679.0	 794.0	 719.6	 717.8	 8.32	 0.50

	 Ether extract, g.kg DM-1	 8	 38.2	 3.83	 33.9	 44.2	 38.2	 38.2	 2.07	 1.00

	 CP, g.kg DM-1	 36	 82.4	 8.98	 72.3	 97.2	 81.8	 83.1	 2.14	 0.05

	 N-NH3, g.kg DM-1	 44	 0.20	 0.21	 0.00	 0.80	 0.23	 0.18	 0.04	 0.11

	 WSC, g.kg DM-1	 10	 4.05	 3.94	 0.10	 10.8	 4.86	 3.24	 1.83	 0.04

	 pH	 52	 4.21	 0.41	 3.73	 5.65	 4.29	 4.13	 0.08	 0.03

	 Lactic acid, g.kg DM-1	 44	 15.3	 6.81	 3.90	 25.1	 15.3	 15.4	 1.47	 0.90

	 Acetic acid, g.kg DM-1	 44	 5.77	 3.14	 1.50	 14.2	 5.08	 6.47	 0.66	 0.03

	 Propionic acid, g.kg DM-1	 18	 0.37	 0.47	 0.00	 1.38	 0.16	 0.59	 0.14	 0.04

	 Butyric acid, g.kg DM-1	 14	 0.19	 0.19	 0.00	 0.62	 0.23	 0.16	 0.07	 0.47

	 Ethanol, g.kg DM-1	 42	 3.52	 3.02	 0.90	 15.6	 4.06	 2.98	 0.66	 <0.01

	 Lactic:Acetic ratio	 42	 3.18	 2.10	 0.14	 8.63	 3.11	 3.25	 0.46	 0.78

	 Yeasts, log cfu.g-1	 10	 3.61	 1.13	 2.00	 5.67	 4.37	 2.84	 0.37	 0.03

	 Molds, log cfu.g-1	 18	 1.83	 0.58	 1.09	 2.90	 1.82	 1.83	 0.20	 0.94

	 DM losses2, g.kg-1	 24	 27.8	 9.96	 4.00	 42.2	 27.3	 28.3	 2.94	 0.56

	 Aerobic stability, h	 28	 216	 117	 35	 427	  194	 237	 31	 0.22
	 1Number of means, 2Fermentative losses.
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were stored for longer than 60 days (85 % of evaluated 
averages). Therefore, it is likely that assimilation of 
lactic acid by L. buchneri strains occurred throughout 
the fermentation process, giving rise to organic acids 
derived from the heterofermentative pathways. Puzzling, 
fermentative losses and aerobic stability were not 
altered.

Optimal dose of additives for improving aerobic stability 
to HMCS

In the current data set, aerobic stability was the 
most important response improved by additive utilization. 
Heterofermentative bacteria and chemical additives 
successfully enhanced aerobic stability of HMCS. For 
recommending an optimal application rate, a broken-line 
regression model was fitted to the data set. 

For heterolactic bacteria, treatment effectiveness 
was achieved when bacteria was applied up to the optimal 
dose of 4.67 × 105 cfu.g FM-1 (Figure 1). It is important to 
highlight the inoculation rates of microbial inoculants. In 
the study reported by Taylor and Kung (2002), the inoculation 
of HMCS stored for 92 d with a low dose of L. buchneri 
(1 × 105 cfu.g-1) did not enhance the aerobic stability. 

Fig. 1:  Aerobic stability of HMCS according to 
inoculation rate of heterofermentative 
bacteria. If Dose ≤ 4.67 × 105 cfu.g-1, aerobic 
stability = 64.4 + 28.3 × Dose (g.kg-1); otherwise, 

	 aerobic stability = 235 h. P < 0.01, R2 = 0.50, 
RMSE = 47.88.
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Fig. 2:  Aerobic stability of HMGS according to 
chemical additive dosage. Aerobic stability = 

	 64.4 + 28.3 × Dose (g.kg-1). P < 0.01, R2 = 0.81, 
	 RMSE = 20.14.

In contrast, application rates ≥ 5 × 105 cfu.g-1 improved 
the aerobic stability more than six-fold compared with 
untreated HMCS stored for the same period. However, in 
silages stored for 166 d, L. buchneri improved the aerobic 
stability even at 1 × 105 cfu.g-1. Additionally to the inoculation 
rate, extending the length of storage is a potential practice 
to improve the aerobic stability and nutritive value of 
HMGS (Taylor and Kung, 2002; Hoffman et al., 2011; 
Der Bedrosian et al., 2012). 

For chemical additives, the aerobic stability 
increased linearly within the studied range of application 
rates (Figure 2). Inhibition of spoiling microorganisms 
(e.g., yeasts and molds) requires a minimum acid 
concentration in silage aqueous fraction. Organic acid 
concentrations between 12.5 and 30 g.kg-1 of water 
may be required to control spoiling microorganisms in 
feedstuffs with high DM content (Collins, 1995). 

In the present data set, 1.0 to 4.0 g.kg-1 are the 
most frequent range of application rate of chemicals. 
Probably, the cost:benefit ratio issue and negative effect 
on animal responses might be plausible justifications 
for these lower application rates. The lack of data for 
higher dosages focusing on aerobic stability in HMCS 
also contributes to this trend. Extrapolations should be 
avoided for silages with high moisture content (i.e., whole 
plant silages) because they typically contain higher levels 
of fermentation end-products.
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Additives to HMWCS

Chemical additives
The changes imposed on HMWCS by adding 

chemical additives are shown in Table 7. The starch 
disappearance in silages treated with additives may have 
been favored by chemical solubilization of the protein 
matrix. However, the agents promoting such breakage are 
not easily identifiable, since the chemical compositions 
are diversified. 

Crude protein, N-NH3 and pH were directly 
influenced by applying chemical additives and their 
composition. Nitrogenous compounds added to silages 
certainly contributed to increase CP and N-NH3 
concentrations. The pH was further increased (5.59) 

when silages were treated with chemical additives. 
This response is relevant because a proper acidification 
is mandatory to control pathogenic microorganisms. 
If silage does not reach low and stable pH (< 4.6), 
clostridial activity can be encouraged (Pitt et al., 1990). 
However, this review does not allow further conclusions 
about clostridium growth risk, since the concentration of 
butyric acid and spore counts were not accessed.

The lower concentration of lactic acid in the 
treated silages suggests that the fermentation process was 
inhibited. The chemicals were efficient in controlling 
molds and yeasts growth, reducing the formation of 
ethanol. The antifungal activity has also been proven 
effective at the feedout phase, increasing the aerobic 
stability of the grains. 

Table 7:  Data set of high moisture winter cereal silages treated without or with chemical additives and their 
effects on silage quality

					     Data set 				   Treatment effect

	 Item	 n1	 Mean	 SD	 Minimum	 Maximum	 Control	 Chemical	
SEM	 P

	 DM, g.kg-1	 52	 641.6	 67.4	 527.0	 756.0	 639.6	 643.6	 13.3	 0.35
	 ADF, g.kg DM-1	 10	 63.8	 11.9	 46.3	 82.0	 62.3	 65.3	 5.59	 0.61
	 Starch, g.kg DM-1	 40	 608.7	 34.1	 532.0	 679.8	 614.3	 603.1	 7.62	 0.07
	 CP, g.kg DM-1	 48	 118.8	 29.8	 94.6	 221.0	 111.7	 125.9	 5.96	 0.02
	 N-NH3, g.kg DM-1	 12	 0.325	 0.23	 0.20	 0.90	 0.28	 0.37	 0.09	 0.04
	 WSC, g.kg DM-1	 42	 45.5	 25.3	 16.8	 100.0	 43.9	 47.1	 5.57	 0.57
	 pH	 52	 5.16	 1.44	 3.80	 9.20	 4.73	 5.59	 0.27	 0.01
	 Lactic acid, g.kg DM-1	 52	 11.0	 10.5	 0.88	 40.0	 12.6	 9.41	 2.05	 0.07
	 Acetic acid, g.kg DM-1	 52	 3.55	 3.70	 0.10	 21.7	 3.16	 3.95	 0.73	 0.35
	 Ethanol, g.kg DM-1	 50	 8.70	 5.91	 0.02	 20.8	 12.0	 5.45	 0.99	 < 0.01
	 Lactic:Acetic ratio	 52	 4.59	 4.15	 0.37	 21.6	 4.50	 4.68	 0.82	 0.86
	 Yeasts, log cfu.g-1	 10	 4.88	 1.95	 1.50	 6.80	 6.44	 3.32	 0.50	 0.01
	 Molds, log cfu.g-1	 10	 4.40	 2.34	 1.70	 6.90	 5.86	 2.94	 0.84	 0.03
	 DM losses2, g.kg-1	 4	 31.5	 15.2	 16.0	 45.0	 33.0	 30.0	 13.0	 0.37
	 Aerobic stability, h	 6	 223	 78	 87	 301	  165	 281	 29	 0.10
	 1Number of means, 2Fermentative losses.

Heterofermentative bacteria
The chemical composition, pH and fermentation 

end products of HMWCS treated with heterofermentative 
bacteria inoculants are shown in Table 8. The lower DM 
content of treated silages may be associated with the 
heterofermentative pattern, evidenced by the increase 
in acetic acid production. Despite losses have not been 
measured, the metabolic pathway of acetic acid production 
leads to carbon losses, which may explain the lower DM 
content of treated silages. Numerically, residual WSC 

content was lower in inoculated silages, corroborating 
with higher microbial activity in these silages.	

Even with an increase in acetic acid levels, ethanol 
production was similar among silages. The final content 
of lactic acid was similar, but the pH of the inoculated 
silages was lower, highligthing that winter cereals have 
enough substrate for an efficient acidification of the 
mass. Anaerobic assimilation of lactic acid performed by 
L. buchneri can also explain the similar content of this 
acid in the silages (Oude-Elferink et al., 2001).
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Table 8:  Data set of high moisture winter cereal silages treated without or with heterofermentative inoculants 
	 and their effects on silage quality

					     Data set 				   Treatment effect

	 Item	 n1	 Mean	 SD	 Minimum	 Maximum	 Control	 Hetero	
SEM	 P

	 DM, g.kg-1	 18	 584.2	 66.5	 499.0	 744.0	 618.6	 549.8	 19.4	 0.02
	 Starch, g.kg DM-1	 18	 623.2	 43.7	 537.0	 680.8	 631.4	 615.0	 14.7	 0.22
	 CP, g.kg DM-1	 18	 101.2	 4.8	 93.8	 110.0	 100.1	 102.4	 1.59	 0.08
	 WSC, g.kg DM-1	 18	 46.6	 27.9	 15.0	 100.0	 53.6	 39.5	 9.26	 0.17
	 pH	 18	 4.37	 0.49	 4.00	 5.90	 4.57	 4.17	 0.15	 0.06
	 Lactic acid, g.kg DM-1	 18	 13.4	 5.86	 1.80	 19.7	 12.7	 14.1	 2.00	 0.50
	 Acetic acid, g.kg DM-1	 18	 9.10	 10.2	 1.00	 33.6	 3.66	 14.5	 2.93	 0.02
	 Ethanol, g.kg DM-1	 18	 10.4	 4.48	 5.29	 19.4	 11.3	 9.55	 1.51	 0.27
	 Lactic:Acetic ratio	 18	 2.21	 1.48	 0.35	 6.00	  3.06	 1.36	 0.41	 0.02
	 1Number of means.

CONCLUSION

Control of fermentative losses is not a concern in 
properly made high moisture grain silages. Therefore, use 
of additives is justified if aerobic stability is improved. 
Additives based on chemical or heterofermentative bacteria 
proven to be effective in preventing aerobic deterioration at 
the same magnitude. The aerobic stability of high moisture 
corn silages was linearly increased with the application 
rate of chemical additives, whereas the optimal dose of
heterofermentative bacteria was 4.67 × 105 cfu.g FM-1.
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