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ABSTRACT

Both the paternal and the maternal pronuclear chromatin undergo the erasure and re-establishment of epigenetic marks 
during mammalian zygotic development. These epigenetic changes regulate the totipotency, self-renewal and eventually 
cell differentiation within the preimplantation embryo. The demethylation of DNA and establishment of adequate 
post-translational histone modifications, called histone code within the zygote, are required for successful development and 
reflects the male or female origin of chromatin. 
Further epigenetic changes are necessary for developmentally regulated transcription and determination of embryonic 
cell lineage as the embryo blastomeres become transcriptionally active during major zygotic genome activation (MZGA). 
In addition to DNA methylation, histone code modifications and their regulation are intensively studied. Sirtuin SIRT1, a member 
of the NADP+-dependent histone deacetylase family, modifies histones via direct deacetylation as well as indirectly through 
non-histone substrate regulation. Positive effects of SIRT1 activation on cell viability and embryonic development have been 
described, and correct histone code modulation is the proposed mode of SIRT1 action. Understanding SIRT1-dependent 
signalling will provide new tools for assisted reproductive technology in animals and therapy in humans, wherein the inadequate 
epigenetic modification is a possible explanation for the failure of embryo development in vitro. 
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INTRODUCTION

The oocyte, a terminally differentiated haploid 
female germ cell, becomes a totipotent zygote after fusion 
with a spermatozoon during the precisely orchestrated 
process of fertilisation. Thereafter, second oocyte 
meiosis is complete, second polar body is extruded, 
and the paternal (male) and maternal (female) pronucleus 
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formation takes place. At the onset of pronuclear 
development, male chromatin tightly packed within the 
sperm head undergoes rapid decondensation, protamine-
histone exchange and male pronucleus formation. 
The zygote containing female and male pronuclei enters 
first mitosis, termed embryo cleavage, and produces 
two nearly identical diploid blastomeres. Subsequent 
cell cycles follow and further milestones of pre-embryo 
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development are reached, such as the major zygotic 
genome activation (MZGA), formation of morula and 
blastocyst differentiation and hatching. Chromatin 
consisting of DNA and histones is dynamically regulated 
during this period (Yanagimachi, 1988). 

Nucleosome, the functional unit of eukaryotic 
chromatin, consists of ~ 147 base pairs (bp) of DNA 
wrapped around a histone core formed by an octamer 
of four different core histone variants (H2A, H2B, 
H3 and H4), and strung together by linker histone 
H1. The DNA within this complex is modified by 
the ligation of methyl groups onto developmentally 
pre-programmed CpG sites, termed DNA methylation. 
Together with post-translational modifications of core 
histones, such epigenetic modifications play a key role 
in both gametogenesis and early embryonic development 
(reviewed by Shi and Wu, 2009). 

A number of core histone splicing variants are 
known in somatic cells as well as in gametes, zygotes 
and embryos. In addition to alternative splicing, histones‘ 
post-translational modifications, e.g. methylation 
and acetylation, affect the structure and function 
of chromatin (reviewed by Yuan and Zhu, 2013). 
Adequate epigenetic changes determine the 
transcriptional activity/chromatin status of a zygote; 
they are essential for gene imprinting and transition 
of the totipotent zygote to the differentiated embryo 
expressing its own genome during MZGA (Patrat 
et al., 2009; Dahl et al., 2010; Latham and Schultz, 
2001). Various upstream factors regulate epigenetic 
changes, resulting in embryonic chromatin remodelling 
observed during development. Correct epigenetic 
changes affecting zygotic pronuclei determine both 
the zygote quality and the subsequent embryo 
development. In their sum, these epigenetic changes 
endow the nearly transcriptionally silent embryonic 
genome with only minor gene expression activity. 
As such, maternal storage and inheritance of mRNAs 
and proteins plays a key role in the regulation of early 
epigenetic changes that essentially rely on the existing, 
oocyte-stored pool of RNAs and proteins. Epigenetic 
changes are subsequently required for modulation 
of transcriptional activity through genome 
reprogramming, setting the stage for ensuing cellular 
differentiation (Latham et al., 1991; Latham and Sapienza, 
1998; Segev et al., 2001; Yan, 2014; Uysal et al., 2015). 

In vitro fertilisation (IVF) or intracytoplasmic 
sperm injection (ICSI), common methods utilised 
in assisted reproductive therapy (ART), allow for 
the continuous observation of early embryonic 
development including pronuclear biogenesis and 
subsequent embryo cleavage all the way up to, and 
including blastocyst formation. On the other hand, 
IVF- and ICSI-derived embryos show lower efficiency 
in development success, lowering the success 

rate of human ART in vitro embryo production, 
as well as in livestock and rodents. Differences 
in epigenetic modifications are likely contributors 
to such developmental failures (Peat and Reik, 2012; 
Farifteh et al., 2014; Matoba et al., 2014; Mao et al., 
2015). Therefore, the study of the epigenetic mechanism 
offers possibilities to improve ART and in vitro embryo 
production. 

Epigenetic regulation through DNA methylation
Epigenetic changes of the embryo start 

immediately after fertilisation when the pronuclear 
development takes place. These changes include 
DNA methylation based on 5‘-methylcytosine (5mC) 
appearance, associated with gene imprinting and DNA 
stabilisation (Wigler, 1981; Stein et al., 1982). In addition 
to DNA methylation, post-translational modifications 
of histones, generally called histone code, occur and 
predetermine transcriptional activity and chromatin 
stability (Dimitrov et al., 1993; Aoki et al., 1997). 

The DNA methyl transferases (DNMTs) are 
responsible for 5‘-methylcytosine formation, thus 
determining gene expression, gene imprinting and 
predisposition to DNA strand breakage. The DNMT1 
protein binds to a hemi-methylated double-stranded DNA 
during replication (Bestor, 2000; Giraldo et al., 2013) 
and is responsible for the maintenance of methylation 
patterns (Hirasawa et al., 2008). Enzyme DNMT3 is 
able to de novo methylate existing double-stranded 
DNA (Okano et al., 1999). Both DNMT1 and DNMT3 
are involved in gene imprinting during gametogenesis 
and embryonic cell differentiation, as well as 
in the maintenance of specific methylation patterns 
during preimplantation development (Kato et al., 2007; 
Hirasawa et al., 2008; Smallwood et al., 2011). 

Before MZGA, the ooplasm-stored proteins and 
proteins translated from maternally inherited mRNAs 
after fertilization control epigenetic modifications, 
assuring that the embryonic DNA undergoes 
demethylation for the maintenance of totipotency. 
Such pre-MZGA modifications prepare the embryo 
for de novo DNA methylation and cell differentiation 
via heterochromatin formation, gene silencing and 
X-chromosome inactivation (Mayer et al., 2000; 
Dahl et al., 2011). Therefore, DNA demethylation of 
a highly methylated zygotic pronucleus is a key event 
immediately after fertilisation (Mayer et al., 2000; 
Dean and Ferguson-Smith, 2001; Reik et al., 2001). 
Asymmetric parent-of-origin dynamics of chromatin 
and DNA demethylation patterning of maternal and 
paternal pronuclei have previously been described 
(Guo et al., 2014). Demethylation of DNA in the paternal 
pronucleus occurs earlier than in the maternal pronucleus. 
Whereas the paternal pronucleus is demethylated 
within four hours after fertilisation, the maternal DNA 
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methylation persists until blastocyst stage (Mayer 
et al., 2000; Dean and Ferguson-Smith, 2001; Reik 
and Walter, 2001; Guo et al., 2014). The major wave 
of genome-wide demethylation occurs at the 2-cell 
stage of the human embryo development (Guo et al., 
2014). Rapid paternal DNA demethylation appears 
to be an active TET3 dioxygenase-dependent process, 
resulting in the creation of oxidised 5mC forms, already 
detectable prior to first round of zygotic DNA replication 
(Mayer et al., 2000; Dean and Ferguson-Smith, 2001; 
Gu et al., 2011; Wossidlo et al., 2011). Contrary 
to the general assumption of passive maternal DNA 
demethylation over consecutive embryo cleavages until 
late morula stage, recent studies have identified a basal 
level of active demethylation process in the maternal 
DNA through detection of oxidised 5mC forms in both 
parental pronuclei (Guo et al., 2014; Shen et al., 2014). 

Altogether, correct zygotic DNA demethylation 
is essential for embryonic cell totipotency and re-
methylation of DNA during subsequent embryonic cell 
differentiation. Besides DNA methylation, adequate 
post-translational modifications of histones determine 
zygotic genome stability, inheritance/maintenance 
of parent-specific gene expression and proper formation 
of the zygotic pronuclei and blastomere nuclei.

Epigenetic regulation by histone code 
Histone variants (H1, H2A, H2B, H3, H4), 

their splicing forms (e.g. H2A.Z, MacroH2A, H2A-
Bbd and H2A.X for H2A), and post-translational 
modifications, such as acetylation, methylation, 
phosphorylation, ubiquitination and sumoylation together 
termed histone code,  are responsible for structural and 
functional modifications of the nucleosome (Kamakaka 
and Biggins, 2005). Zygote formation represents a 
dynamic phase of early development encompassing 
rapid protamine-histone exchange and immediate 
pronucleus biogenesis including histone code 
modification. Histone modifications in the zygote are 
associated with specific nucleosomal features. Whereas 
histone acetylation and methylation on lysine residues 
are markers of transcriptional activity, phosphorylation 
(e.g. that of H2A.X, abbreviated as γH2A.X) or 
ubiquitination (e.g. that of H2A.Z) determine histone 
recycling and DNA breaks (Chen et al., 1998; Kuo and 
Yang, 2008). 

Among aforementioned histones, splicing 
variants and post-translational modifications histone H3 
are well known. Histone H3 variants in differentiated 
somatic cells and embryonic stem cells comprise H3.1, 
H3.2 and H3.3 (Yuan and Zhu, 2013; Zhou and Dean, 
2015). Pronuclear asymmetry  is manifested at the onset 
of development wherein H3.1 and H3.2 variants 
are absent from the paternal pronucleus of early mouse 
zygotes, and H3.3 is the predominant H3 variant 

within paternal chromatin (van der Heijden et al., 2005; 
Torres – Padilla et al., 2006). 

Histone H3 acetylation is denoted as a marker 
of transcriptional activity (Hebbes et al., 1988, 1994), 
facilitating the binding of transcription factors to 
chromatin (Lee et al., 1993; Vettese – Dadey et al., 1996). 
However, H3 acetylation is also frequently associated 
with DNA damage (Khobta et al., 2010). Lysine residues 
K9 and K14 are critical sites for the acetylation of histone 
H3 (Bjerling et al., 2002). Despite the transcriptional 
silence inherent to meiosis, the histone acetylation 
pattern plays a role in oocyte maturation (Kim et al., 2003; 
Endo et al., 2005). In the embryo, histone acetylation 
predicates the oncoming major wave of transcription 
at MZGA (Adenot et al., 1997). 

Histone methylation is considered as an opposite 
to histone acetylation. Histone methylation is crucial 
for genome stabilisation, epigenetic inheritance and 
cellular memory maintenance (Grunstein, 1997; Zhang 
and Reinberg, 2001; Grewal and Jia, 2007; Muramatsu 
et al., 2013). In the zygote, while the maternal 
pronucleus is typically di- and tri-methylated (me2/3) 
on lysine residues K4, K9, and K27 of histone H3, the 
paternal pronucleus displays lesser histone methylation 
(Figure 1). Paternal pronucleus is restricted to 
monomethylation of H3 on K4, K9 and K27, 
which, however, is also present in the maternal 
pronucleus (Lepikhov and Walter, 2004; Santos et 
al., 2005; van der Heijden et al., 2005). In addition 
to the pronucleus, H3K9me2/3 is fundamental for 
epigenetic changes resulting in DNA stabilisation, 
gene silencing, heterochromatin establishment and X-
chromosome inactivation during inner cell mass (ICM) 
formation (Bannister and Miska, 2000; Rea et al., 
2000; Cao et al., 2002; Plath et al., 2004). Although 
the above-mentioned patterns of histone methylation 
are associated with gene silencing, the methylation 
of H3K4 coincides with active transcription sites 
(Heintzman et al., 2007; Eissenberg and Shilatifard, 
2010) and appears essential for genome reprogramming, 
increasing around the time of MZGA in the mouse 
(Shao et al., 2014). 

Regulation of the histone code
Histone acetylation is specifically catalysed 

by histone acetyltransferases (HATs) capable of 
removing the acetyl group (Brownell and Allis, 
1996). Alternatively, non-HATs enzymes with histone 
acetyltransferase activity, such as transcription 
initiation factors TFIID and ELP3, are subunits of 
elongator/RNA polymerase II (Mizzen et al., 1996; 
Wittschieben et al., 1999). Among them, HAT1 
is responsible for acetylation of newly synthesised 
histones including H3, as well as the maintenance of 
acetylation during mammalian embryo development 
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(Nagarajan et al., 2013). On the other hand, histone 
deacetylases (HDACs), discussed in more detail below, 
are responsible for acetyl group removal and thus 
enact under-acetylation of their substrate histones 
(Tauton et al., 1996; Dangond et al., 2001). Early 
embryonic development is regulated by HDACs 
through deacetylation of both histones and non-histone 
substrates including α-tubulin, especially until 
fertilisation when HDACs activity is naturally reduced 
(Matsubara et al., 2013). Interestingly, overall inhibition 
of HDACs improves the quality of somatic cell nuclear 
transfer (SCNT)-derived embryos by an increase 

of histone acetylation and down-regulation of DNMT1 
(Hou et al., 2014; Mao et al., 2015). 

After the HDACs release acetyl group, 
methyltransferase activity increases following 
the exposure of binding sites for the methyl group 
(Dangond et al., 2001). A wide spectrum of enzymes 
with methyltransferase activity appears to be essential 
for the zygote and early embryo where they are 
responsible for histone methylation. Among histone 
methyltransferases, the suppressor of variegation 3-9 
homologue 1 and 2 (SUV39H1, SUV39H2, also known 
as KMT1A, KMT1B), euchromatic histone-lysine 
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Fig. 1:  Asymmetry of the histone code in the porcine zygote pronuclei. Different intensities of acetylated (green) 
and methylated (red) histone H3 labeling, representing paternal and maternal female pronucleus (PN), 
respectively, is present (A). The paternal pronucleus was identified by the presence of pre-labeled sperm 
mitochondria, indicated by asterisk. Signal intensity profile shows higher H3K9 acetylation and lower 
H3K9 methylation in the paternal pronucleus, in contrast with maternal pronucleus (B). 
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N-methyltransferase 1 and 2 (EHMT1, EHMT2, also 
GLP and G9A, respectively), SET domain bifurcated 
1 and 2 (SETDB1, SETDB2) and mixed lineage 
leukemia family (MLL/SET) enzymes transfer 
the methyl group to lysine in the N-terminal tail 
of histones and establish heterochromatin marked by 
H3K9me2/3 modification (Rea et al., 2000; Tachibana 
et al., 2001; Völkel and Andgrad, 2007; Park et al., 2011; 
Shao et al., 2014; Golding et al., 2015). 

The above mentioned SUV39H1 is an established 
key factor for facultative heterochromatin formation, 
genome stability and regulation of gene expression by 
transcription factors (Firestein et al., 2000; Nielsen 
et al., 2001; Peters et al., 2001; Vaquero et al., 2004). 
The activity of this enzyme is important for embryogenesis 
and determination of embryonic cell lineage (Park 
et al., 2011; Shao et al., 2014). Heterochromatin 
formation mediated by SUV39H1 involves the linkage 
of multiple proteins, such as heterochomatin proteins 
HP1α and HP1β. Cross-linking of SUV39H1 and HP1 
is associated with centromeric regions. The constitution 
of an SUV39H1-HP1 methylation system is important 
for chromosome segregation (Aagaard et al., 2000) 
and H3K9 methylation (Bannister et al., 2001; 
Lachner et al., 2001; Nakayama et al., 2001; Jacobs and 
Khorasanizadeh, 2002; Maison and Almouzni, 2004; 
Park et al., 2011). 

The formation of the SUV39H1-HP1-H3K9me2/3 
complex is associated with other marks of genome 
stability, such as DNA methylation (Johnson et al., 
2002; Lehnertz et al., 2003; Peters et al., 2003; Peters 
and Schubeler, 2005; Yeo et al., 2005). Therefore, 
DNMT1 and DNMT3B seem to be strictly downstream 
factors of SUV39H1 on pericentromeric chromosome 
loci in embryonic stem cells, where DNMTs form 
complexes with HP1 isoforms (Lehnertz et al., 2003). 
Moreover, DNMT1 interacts directly with histone 
H3 methyl transferase G9A at the replication fork, 
resulting in H3K9 methylation (Cheedipudi et al., 2014; 
Esteve et al., 2005), and a positive feedback loop is 
indicated. Methylated H3K9 also recruits co-factors 
of other DNA methyltransferases (Karagianni et al., 
2008).

In summary, SUV39H1 exerts a positive effect 
on early embryonic development. In accordance with 
this assumption, understanding molecular mechanisms 
leading to SUV39H1 activation will facilitate further 
progress in ART. Recent studies point to non-histone 
substrates of NAD+-dependent histone deacetylates, 
sirtuins, targeting a wide spectrum of factors with 
cumulative effects resulting in histone methylation 
following their direct deacetylation (Vaquero et al., 
2007a; Li et al., 2009; Bosch – Presegue et al., 2011). 

Sirtuins: the favourite histone deacetylase 
The family of histone deacetylases (HDACs) 

is responsible for histone deacetylation on lysine 
residues (Allfrey, 1964; Fujimoto, 1972). Based on the 
original description, the HDACs are divided into three 
classes: Rpd3p (class I), Hda1p (class II) and Sir2p 
(class III). An important group within this family is 
the NAD+-dependent class III of HDACs, together called 
the sirtuins. The sirtuin family comprises 7 members 
(SIRT1 - 7), collectively identified as key regulators of 
lifespan and longevity in various organisms. Sirtuin 
activity has been linked to protection against DNA 
damage and repair of DNA strand breaks (Haigis and 
Guarente, 2006; Kim and Um, 2008; Canto and Auwerx, 
2009; Milner, 2009; Herranz et al., 2010). Beneficial 
effects of sirtuins during gametogenesis and early 
embryo development have been described (Coussens 
et al., 2008; Kawamura et al., 2010; Kwak et al., 2012a, 
2012b; Bell et al., 2014; Di Emidio et al., 2014; Zhang 
et al., 2014). One possible explanation of sirtuins‘ 
protective role is their ability to deacetylate histone H1 
on K26, H3 on K9, K14, K26 and K56, and H4 on K8, 
K12 and K16 (Vaquero et al., 2004; Vaquero et al., 2007b; 
Oberdoerffer et al., 2008; Das et al., 2009; Chen et al., 
2010). These deacetylations lead to a greater abundance 
of methylated histones, acting as heterochromatin 
marks. Histone methylation requires lysine residue 
release and activation of multiple methyltransferases 
(Vaquero et al., 2004; Yuan and Zhu, 2013). 

The above mentioned SUV39H1 methyltransferase 
is activated by deacetylation of K266 within its catalytic 
SET domain by SIRT1 (Rea et al., 2000; Vaquero 
et al., 2007a), which accumulates in the zygotic pronuclei 
(Figure 2). In addition to induction of deacetylating 
activity, SIRT1 may protect and prolong the half-life 
of SUV39H1 by suppressing its proteasomal degradation 
promoted by polyubiquitination via MDM2 E3-type 
ubiquitin ligase (Bosch – Presegue et al., 2011). Therefore, 
H3K9me2/3 increases in the presence of activated 
SIRT1 (Peters et al., 2003; Vaquero et al., 2004; Vaquero 
et al., 2007a). The H3K9me2/3 is able to protect H3 
against proteasomal degradation due to HP1α recognition 
followed by ICBP90 binding (Karagianni et al., 2008). 
This complex enables heterochromatin establishment 
and maintenance, relevant for epigenetic regulation 
of mammalian development (Peters et al., 2003; Matoba 
et al., 2014). 

In addition to histone code modification, SIRT1 
is capable of affecting signalling mediated by 
transcriptional factors, such as p53, proteins of 
the Forkhead box O-class family (e. g. FOXO1, 
FOXO3A), and p65, a subunit of NF–κB (Kawahara et 
al., 2009; Kawamura et al., 2010; Wang et al., 2012; 
Shinozaki et al., 2014). Expression of p53 negatively 
determines the blastocyst quality and plays a role 
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Fig. 2:  The SIRT1 protein (green) in porcine zygote. Co-localisation of SIRT1 and DNA indicates SIRT1 
accumulation in the pronuclei. Weak SIRT1 signal in cytoplasm is in accordance with existence 

	 of SIRT1 non-histone targets (A). Manders‘ overlap coefficient shows 70 % total signal of SIRT1 in 
	 the pronucleus wherein 99 % of chromatin is co-localised with SIRT1 (B). NC: negative control for 

SIRT1 immunolocalization (anti-SIRT1 antibody was replaced with a non-immune serum during 
sample processing). 

in response to DNA damage during embryogenesis. 
The aforementioned ubiquitin ligase MDM2 is involved 
in proteasomal degradation of p53 (O‘Neill et al., 
2012; Tollini et al., 2014) and cross-talk between 
MDM2 and p53 regulates proteasomal degradation of 
FOXO3A (Fu et al., 2009). Regulation by MDM2 and/or 
the marking-up of deacetylated lysine residues in FOXO 
for ubiquitination are two possible ways of SIRT1 
signalling leading to improved embryonic development 
due to FOXO regulation (Chen et al., 2010; Wang et al., 
2012, 2014; Chao et al., 2014; Sparks et al., 2014; Tseng 
et al., 2014). 

In addition to MDM2 signalling, SIRT1 affects 
various cell survival-related functions, including 
mitochondrial metabolism, apoptosis and maintenance of 
telomere length (Palacios et al., 2010; Wang et al., 2013; 
Zhang et al., 2015). The extensive spectrum of SIRT1 

targets indicates its complex effect, with the prospect 
of utilisation for improvement of in vitro embryo 
production. However, many non-histone targets and 
exact SIRT1 molecular mechanisms in early embryonic 
development remain undefined. 

Significance of SIRT1 understanding for assisted 
reproduction and in vitro embryo production

The multiplicity of cellular pathways involving 
SIRT1 signalling (Figure 3) accounts for the well-known 
pro-survival effect of resveratrol, a strong activator 
of sirtuin favouring SIRT1 (Hubbard et al., 2013; 
Lakshminarasimhan et al., 2013). The positive effect of 
SIRT1 activation on oocyte maturation, early embryonic 
development and blastocyst rate has been described 
in numerous studies (Lee et al., 2010; Kwak et al., 2012a; 
Giaretta et al., 2013; Sato et al., 2014; Takeo et al., 2014; 
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Itami et al., 2015). Although SIRT1-improved embryonic 
development is well known, SIRT1 signalling in embryos 
is not understood, and research focused on its targets 
and determinants is still insufficient.

Epigenetic changes and histone code dynamics 
are potential subjects of SIRT1 and thus possible 
targets for further improvement of in vitro embryo 
production, which is inferior to in vivo development. 
In addition to IVF, epigenetic modifications play 
a key role in assisted reproductive technologies, 
such as ICSI and SCNT, where SIRT1 activity may 
be altered (Kwak et al., 2012b; Peat and Reik, 
2014; Mao et al., 2015). Subsequently, varied 

modifications of the DNA and histone code during
zygotic and embryonic development could be responsible
for the high failure rates of these techniques. 

The involvement of SIRT1 in epigenetic 
inheritance provides an opportunity for the utilisation 
of new knowledge based on SIRT1 study. However, 
comprehensive research needs to be undertaken before 
its application to in vitro techniques and methods 
of both assisted reproduction in farm animals and 
human reproduction therapy. Particular efforts in our 
laboratories will focus on the cross-section of SIRT1 
and HDAC-mediated epigenetic regulation with
the ubiquitin-proteasome system, which plays important 

Fig. 3: The involvement of SIRT1 in histone code modifications and heterochromatin establishment. 
	 The complex of H3K9me2/3 - HP1α - DNMT1 causes DNA methylation accompanied by the presence 

of aforementioned histone heterochromatin markers. The SIRT1 protein is able to suppress MDM2 
- mediated proteolysis of SUV39H1 and thus increase the presence of heterochromatin markers. Direct 
deacetylation of histones enables the methylation of H3 as well as ubiquitination and proteolytic 
degradation of H2A.Z. Altogether, these genome changes can be beneficial for genome stabilisation 

	 in zygotic pronuclei and thus improvement of further embryonic development in vitro. MDM2: Mouse 
Double Minute 2 homolog, E3 - ubiquitin ligase; SUV39H1: Suppressor of Variegation 3 - 9 Drosophila, 
homolog 1, the histone methyl transferase; ac: acetyl group; me2/3: di – or trimethyl group; HP1α: 
Heterochromatin Protein 1α; DNMT1: DNA Methyl Transferase 1; 5mC: 5'-methylcytosine. 
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roles in gametogenesis, fertilization and pre-embryo 
development (Sutovsky, 2003; Mtango et al., 2014; 
Nevoral and Sutovsky, 2015).
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