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EVALUATION OF ANIMAL MODELS BY COMPARISON WITH HUMAN 
DIABETES MELLITUS: A REVIEW
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ABSTRACT

Animal models are widely used to imitate human diseases to improve the understanding of the pathophysiology of 
disease and to test treatment interventions. A chronic disease, such as diabetes mellitus, is a fast-growing epidemy 
worldwide connected with obesity, lack of physical exercise, aging and genetics. This review brings an introduction to 
diabetes mellitus and compares individual animal models, mainly rodents, with respect to this disease. The selection of 
a suitable model is important and essential for the progression of new therapeutic methods of preclinical and clinical 
studies.
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INTRODUCTION

Diabetes mellitus (DM) is a disease of the 
endocrine system diagnosed by abnormally high 
blood glucose levels. It is one of the most common 
and fastest growing diseases in the world, which 
estimated to affect 693 million adults by 2045. DM 
has more than 50 % increases since 2017 (Cho et al., 
2018). According to American Diabetes Association 
(2015) the most common forms of diabetes are  
the type 2 diabetes (DMT2), when insulin resistance 
can lead to hyperglycaemia and the type 1 diabetes 
(DMT1), when there is an absolute lack of insulin 
due to the destruction of β-cells in the pancreas.  
DM is rather a group of metabolic conditions 
categorized by a hyperglycaemia than a single disease.  
Recent findings show that DMT2, as the predominant 
subtype of diabetes, is heterogeneous itself in terms 
of both mechanisms of action and relationships with 
health outcomes (American Diabetes Association 2018;  
Udler et al., 2018). The essence of the pathophysiology  

of DMT2 is that adipose tissue, which is an endocrine  
organ, can secrete several hormones and cytokines 
(TNF – α, IL – 6, resistin) that are able to induce chronic  
inflammatory status and insulin resistance (Millo, 
2002). Obesity is connected with increased levels  
of cytokines, such as TNF – α, IL – 1β or IL – 6 by both  
immune cells and adipocytes. Such increased 
secretion induces insulin resistance by multiple 
mechanisms, including activation of Ser/Thr kinases,  
decreasing IRS – 1, GLUT4 and PPARγ expression 
or activation of SOCS3 in adipocytes (Hirosumi et 
al., 2002; Jager et al., 2007; Boucher et al., 2014). 
Low levels of adiponectin and leptin resistance are 
common in obese patients with metabolic syndrome. 
Leptin is a hormone with orexigenic activity that  
helps regulate energy balance by inhibiting hunger, 
while adiponectin is a peptide synthesized by 
adipocytes that has anti-inflammatory effects (Yadav  
et al., 2011). In such a situation, insulin has no 
antilipolytic effect, resulting in increased production 
and secretion of free fatty acids (FFA), which are 
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also responsible for the state of insulin resistance. 
Elevated plasma concentrations of FFA are lipotoxic 
to β-cells. In addition, cholesterol and triglyceride 
levels are also elevated, especially the levels of low-
density lipoproteins (LDL), which have a negative 
effect on the cardiovascular system (Boden, 2003). 
This multifactorial pathophysiology of DMT2 is 
presented in Figure 1 (Artasensi et al., 2020).

Genetic and environmental components 
are important factors in the heterogenity of 
diabetes and its complications. When early studies 
identified differences in the susceptibility to 
diabetic complications in patients, who appeared 
to be the same in terms of diabetes control, clinical 
signs and family management studies were able 
to show clear and remarkable differences in the 
incidence of microvascular and macrovascular 
complications in individuals with both diabetes and 
complications compared to people with diabetes 
but without complications (Deckert and Poulsen, 
1981; Toumilehto et al., 1998). There is still no 
cure for any type of diabetes, however there is a 
number of treatments with antidiabetic activity. 
The most commonly used drugs in the treatment 
of diabetes include insulin, α-glucosidase inhibitors, 
amylin analogs, dipeptidyl peptidase-4 inhibitors, 

incretin mimetics, meglitinides, non-sulfonylureas, 
sulfonylureas and thiazolidinediones. Despite 
the wide variety of different types of antidiabetic 
agents, such agents have side effects that are 
commonly associated with oral antidiabetic agents, 
causing serious problems and challenges in the 
effective management of the disease. Recently, 
extensive research has focused on finding 
alternative but effective and safer thermostatic  
agents to improve diabetic syndrome (Hasan et al., 
2018). Of the thousands of plants that have shown 
antidiabetic effects, only a few are characterized by 
safety, efficacy and a potential antidiabetic agent 
(Bnouham et al., 2005).

DM is a complex disorder and the human 
or animal physiology is also very complex. Animal 
models are one of the major tools to progress 
with establishing an effective model to examine 
the mechanism of action as well as to explore the 
beneficial substances within plants. However, the 
disease itself is very heterogeneous, what leads to 
many approaches to cause the diabetes as well as 
the other complications related to diabetes. Thus,  
a single animal model to examine the efficacy of  
the treatment is not possible owing to the existence 
of different types of DM (Vedtofte et al., 2010).

Figure 1. Pathophysiology of Diabetes mellitus type 2 (Modified according to Artasensi et al., 2020)
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There are several types of animal models 
for diabetes. Animal models can be divided into 
spontaneous diabetic animals, diet/nutrition induced  
diabetics, chemical induced diabetic animals and 
surgical diabetic animals. Each type of a model has 
advantages and disadvantages. In addition to in vivo 
methods, in vitro methods are also used for diabetes 
research, which are more cell-specific and less time-
consuming, but the human body is a more complex 
system that cannot be explored by in vitro assays 
alone. Therefore, the efficacy of sample molecules 
should also be tested through an in vivo system to 
achieve a better understanding. Cell models can be 
especially recommended for specific mechanism 
research as well as for primary stage research to 
determine the exact target molecule or receptor. 
However, animal models are recommended for 
further studies on drug development as well as for  
the evaluation of toxicological profiles (Hasan et al.,  
2018). Animal models may differ in their physiological 
severity with some models more similar to the 
development of the disease than others. When 
selecting a model for DM, it is desirable to use a 
variety of different animal models to express the 
diversity observed in human diabetes (King, 2012). 
For this reason, the aim of this study was to review 
and compare existing animal models on human 
physiology with respect to diabetes.

Type 1 diabetes animal models
DMT1 is characterized by an autoimmune 

destruction of the pancreatic β-cells, leading to 
lack of insulin production. Animal models of type 
1 diabetes has deficiency in insulin production 
achieved by a variety of different mechanisms like 
chemical ablation of the β-cells or breeding rodents 
that spontaneously develop this type of diabetes 
(King, 2012). Among chemically induced diabetes 
substances, alloxan (ALX) and streptozotocin (STZ) 
are the most commonly used. STZ and ALX can 
be administered through either intraperitoneal, 
subcutaneous or intravenous ways. The mechanism 
of action is, that both chemicals are selective 
cytotoxic agents and consequently destroy the 
pancreatic β-cells. They are both glucose analogues 
which are transported to pancreatic β-cells by 
GLUT2 transporter. STZ causes alkylation of DNA by 
methylnitrosourea and ALX forms reactive oxygen 
species (ROS), which lead to the destruction of β-cells 

(Lenzen, 2008). The destruction of β-cells can cause 
various complications, such as hyperglycaemia, 
glycosuria, polyuria, polydipsia, hyperphagia and 
weight loss (Han and Liu, 2010). Chemically induced 
diabetes is mostly used when experimenting with 
drugs or therapies, where the main mechanism 
of action is lowering glycaemia (Jederstrom et al., 
2005). Disadvantage of chemically induced diabetes 
is, that the chemicals can be toxic for other organs 
of the body and may cause changes in the liver, 
kidney, lung, intestines, testis or brain. This should 
be considered when examining effects of drugs on 
these models (Lee et al., 2010).

Surgical induction of diabetes is an another 
way to cause DMT1 in animals. In addition to 
chemical induction, surgical removal of the pancreas  
is an alternative to reduce toxic side effects of 
chemically induced diabetes but, on the other hand, 
such an operation requires extensive experience, 
finances and sufficient sterility of the environment. 
The limitations of this surgical model outweigh 
its advantages as large amount of analgesic 
and antibiotic, post-surgery pancreatic enzyme 
supplement and risk of animal infection are major 
drawback of this technique. There have been many 
attempts to perform partial pancreatic surgery, 
which is yet to be developed or acclaimed to 
achieve desired diabetogenic action. Such surgical 
removal has been reported on animal models of 
some species, such as rats, dogs or pigs (Weir et al.,  
1983; Wang et al., 2009; Vedtofte et al., 2010; Müller,  
2016).

Other commonly used autoimmune models 
are the non-obese diabetic (NOD) mouse, the 
AKITA mouse, the LEW.1AR1/Ztm-iddm rat and 
the biobreeding (BB) rat (Lenzen et al., 2001; 
Yang and Santamaria, 2006). DMT1 is developed 
spontaneously or by genetic alteration in these 
models. Animal models of this type (spontaneous 
or genetic alteration) have many varieties that more 
accurately depict the complex nature of diabetes 
in humans (Ro et al., 2010). These models usually 
have mutations in genes that encode transcription 
factors important for β-cell identity or protein 
components of machineries that regulate insulin 
secretion. A spontaneous mutation in Ins2 in the 
Akita mouse causes the accumulation of misfolded 
proinsulin and leads to endoplasmic reticulum 
stress and ultimately loss of β-cells (Yoshioka et al., 
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1997; Kleinert et al., 2018). DMT1 susceptibility is 
determined largely by major histocompatibility 
complex (MHC). Genes encoding MHC class II 
analog (H2g7 in mice) show the same diabetogenic  
amino acid substitution (Atkinson and Leiter, 1999). 
In BB rats, the expression of diabetes requires 
the presence of at least one MHC class II RTB/
Du allele, what is DMT1 susceptibility loci in rats 
(Chatzigeorgiou et al., 2009). Defects in antigen-
presenting cell maturation have been noted to 
produce autoantibodies to insulin, glutamic acid 
decarboxylase and islet cell antibodies (Pociot 
and McDermott, 2002). Similar to human beings, 
ketoacidosis is very severe in the rat models and can 
not survive without insulin (Chatzigeorgiou et al., 
2009). However, one of the main disadvantage is, 
that these models are not very available and post-
diabetes maintenance is a major problem to keep 
the animals healthy (Pravenec, 2010). In addition 
to predominantly rodent models, pigs, primates 
or dogs are also used in research of DMT1 (Mellert 
et al., 1998; Fisher et al., 2001; He et al., 2011). 
Pancreatectomy in pigs with autotransplantation of 
the isolated islets reflects islet autotransplantation  
in humans (Matsumoto, 2011).

Another type of models of DMT1 are models  
created using a virus (Werf et al., 2007). Viruses 
in animal models are initiating β-cell destruction. 

The β-cell destruction can be achieved by 
direct infection of the β-cells or initiation of an 
autoimmune response against the β-cells (Jun and 
Yoon, 2003). Viruses used to induce DMT1 include 
coxsackie B virus, encephalomyocarditis virus and 
Kilham rat virus (Guberski et al., 1991; Shimada 
and Maruyama, 2004; Jaidane et al., 2009). 
Disadvantage of the virus-induced models is that 
the outcome is dependent on replication levels 
of the virus as well as on timing of the infection. 
Viruses can both induce autoimmunity as well as 
prevent it depending on the conditions (Herrath 
et al., 2011). Furthemore, it is still unclear to what 
extent viruses are involved in the pathogenesis of 
DMT1 in humans (Werf et al., 2007).

Type 2 diabetes animal models
DMT2 is a complex metabolic disease in which 

the pathophysiology is greatly influenced by genetic 
and environmental factors. Hyperglycaemia occurs 
as a consequence of the pancreatic islet failure. 
Failure of the pancreatic islets results in β-cell mass 
deficiency and increased glucagon secretion (Kahn 
et al., 2014). There are currently many models for 
DMT2 research, but they must meet three essential 
criteria for validation. The first criterion is the 
characteristics of the disease in humans: increased 
fasting glucose and glucose intolerance. Next criterion  

Table 1. Different rodent models of Diabetes mellitus type 2 with the signs of metabolic syndrome  
 (Modified according to Panchal and Brown, 2011)

 Rodent Age Obesity Hypertension Dyslipidaemia Cardiovascular Impaired Fatty Kidney
 model (weeks)    dysfunction glucose liver dysfunction
       tolerance  

 ob/ob 4 Y N N N N N X
 mice 12 Y N N N Y Y X
  24 Y N N y Y Y X
 db/db 6 Y N N N N N X
 mice 12-13 Y N N Y Y N X
  20 Y N N Y Y Y X
 ZDF rats 12-15 Y Y Y Y N N N
  20 Y Y Y Y N Y N
  31-47 Y Y Y Y N Y Y
 Goto- 4 N N N N Y N N
 Kakizaki 8 N N Y N Y Y N
 rats 20 N N Y Y Y Y N
  60 N N Y Y Y Y Y

  Y indicates the presence, N indicates the absence of the signs of metabolic syndrome and X indicates unavailability of the data. 
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is that the all existing DMT2 treatments in humans 
are equally effective at reversing DM symptoms 
in animal models. Finally, they mostly predicted 
the translation potential of the new therapeutic 
molecules into results of clinical trials. The most 
common models are mice and rats due to its small 
size, high fertility, availability of genetic tools to 
manipulate its genome and short generation time. 
Pigs or monkeys, as animal models, can also develop 
obesity and insulin resistance, however, their 
postprandial glycemic index often remains quite 
low as plasma insulin levels increase (Baribault, 
2016). The widespread occurrence of metabolic 
disorders connected with DMT2 in humans means 
that there is an urgent need to research relevant 
causes, progression and treatment of the signs. 
Rodent models reflecting these features differ from 
each other and it is important to choose the right 
model for research (Panchal and Brown, 2011). 
Table 1 shows different rodent models with the signs  
of metabolic syndrome. 

The models of DMT2 are often linked with 
obesity, which reflects the human condition to DMT2  
development. These models may have abnormalities 

in a single gene or multiple genes related to obesity, 
glucose intolerance and insulin resistance leading to 
hyperglycaemia (Kawano et al., 1999). Obesity can 
be achieved through genetic manipulation, naturally 
occurring mutations or with a high-energy diet 
(King, 2012). Monogenic obese models include the 
Lepob/ob mouse, Leprdb/db mouse and Zucker Diabetic 
Fatty (ZDF) rat. These rodent models have defect 
in leptin signalling, what means that leptin induces 
satiety, because of a lack of functional leptin, which 
induces hyperphagia and subsequent obesity (Gault 
et al., 2011). Mechanism of the action of leptin and  
its receptor deficiency is presented in Figure 2 (Panchal  
and Brown, 2011).

Both Lepob/ob and Leprdb/db mice are the models 
designed at the Jackson Laboratory (Hummel et al.,  
1966; Zhang et al., 1994). These mice are developing 
hyperinsulinaemia at around 2 weeks of age and 
hyperglycaemia starts at 4-8 weeks of age and 
gradually become obese due to hyperphagia. They 
have a relative short lifespan (Lindstrom, 2007; 
Srinivasan and Ramarao, 2007). In addition, Lepob/ob 
mice are sterile (Chehab et al., 1996).

Figure 2. Mechanism of the action of leptin and its receptor deficiency in rodent 
models (Panchal and Brown, 2011).
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Another monogenic obese model, also used 
in our experiments to describe effects of potential 
treatments for DMT2 and its complications, is 
Zucker Diabetic Fatty (ZDF) rat (Capcarova et al., 
2019; Dupak et al., 2020). ZDF rats has origin in the 
Zucker Fatty (ZF) rats, which were created in 1961 by  
a crossing between Merck M-strain and Shermanrats. 
Like previous models, ZF rats have a mutated leptin  
receptor causing hyperphagia and obesity at around 
4 weeks of age. They have also hyperinsulinaemia,  
hyperlipidaemia, hypertension and impaired glucose  
tolerance (Srinivasan and Ramarao, 2007). A difference  
between ZDF and ZF rats is that ZDF rats are less 
obese, have a higher insulin resistance, show signs 
of diabetic complications, and diabetes usually 
develops at 8-10 weeks only in males (Pick et al., 
1998; Shibata et al., 2000). Furthermore, infertility 
of ZDF males is a problem that is holding back 
research, which has been addressed by the use 
of testosterone propionate, which increases the 
probality of ejaculation and sexual activity. In 
addition, ZDF rats do not develop hypertension 
or cardiovascular disease spontaneously (Clark 
et al., 1983; Hemmes and Schoch, 1988). The 
development of diabetes in ZDF rats has become a 
popular model for preclinical studies of DMT2 due 
to the fact that these rodents exhibit impaired islet 
architecture, β-cell degranulation and increased 
apoptosis of β-cells (Clark et al., 1983).

Goto-Kakizaki are spontaneously diabetic, but 
non-obese rats created by a Japanese group using 
repetitive breeding of Wistar rats with the poorest 
glucose tolerance (Goto et al., 1976; Yasuda et 
al., 2002). Several distinct genetic lesions exist in  
Goto-Kakizaki rats, including disorders of β-cell 
metabolism and function. In combination with 
chronic hyperglycaemia, inflammation and oxidative 
stress, disorders of β-cell metabolism and function 
result in impaired islet architecture and loss of β-cell 
mass (Portha, 2005; Kleinert et al., 2018). They 
are a lean model of DMT2, which is characterized 
by glucose intolerance and defective glucose-
induced insulin secretion (Ostenson and Efendic, 
2007). Studies have confirmed the involvement 
of macrophages in inducing inflammation around 
β-cells, leading to altered islet architecture and 
morphology. Once these islets are distorted, they 
are unable to secrete insulin in response to glucose, 
thereby causing β-cell dysfunction. Significantly 

altered macrophage levels were observed by islet 
immunohistochemistry with various antibodies such 
as MHC class II, CD68, CD53 and granulocytes (Homo-
Delarche et al., 2006). Inflammatory processes 
of islets in Goto-Kakizaki rats show increased islet 
expressions of IL – 1β, IL – 6, TNF–α and chemokines 
including CXCL1/KC, MCP–1 and MIP–1α, that leads 
to impaired insulin secretion and β-cell dysfunction 
(Ehses et al., 2009). Goto-Kakizaki rats have been 
used in experiments ranging from β-cell dysfunction  
in DMT2 to diabetic complications (Okada et al., 2010;  
Giroix et al., 2011).

High fat feeding
Diet plays a crucial role in growth as a source 

of nutrition. An increased caloric intake has been 
connected with many diet-induced complications 
including metabolic syndrome, cardiovascular 
diseases and non-alcoholic fatty liver disease. High 
fat feeding is used in animal models to reflect these 
signs and symptoms of human metabolic syndrome 
associated with DM (Panchal and Brown, 2011). 
An obesity, hyperinsulinaemia and altered glucose 
homeostasis are among the most common signs of 
high fat feeding due to insufficient compensation by 
the pancreatic islets, which leads to impaired glucose 
tolerance (Winzell and Ahren, 2004). High fat feeding 
animal models are one of the best models, because 
they mimic human situation more accurately than 
genetic models, since the obesity is induced by 
environmental manipulation rather than genes 
(Surwit et al., 1995). In the experiments a normal 
diet (around 26 % protein, 63 % carbohydrate and 
11 % fat) is substituted for a high fat diet, which 
significantly increases the number of calories from 
fats (about 58 % of the energy obtained from fats). It 
is necessary to ensure that experimental rodents do 
not eat less than normal. Studies have shown that 
they weighed much more than control animals as 
early as one week after starting a high fat feeding 
(Winzell and Ahren, 2004). High fat feeding presents 
the proper etiological, pathological and treatment 
options, because most patients with DMT2 became 
ill due to their diets, not to their genetics. From this 
reason, high fat feeding is the most appropriate 
disease model. However, creating a suitable protocol 
for high fat feeding is not easy. High fat feeding 
models and DMT2 have a complex and overlapping 
pathophysiology (Figure 3; Heydemann, 2016).
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The disadvantage of high fat feeding may 
be that not all obese animals develop DMT2 or 
they sometimes become overtly obese and long 
period is needed since the animals are fed over 
diet to increase blood glucose level (Hasan et al., 
2018; Suleiman et al., 2020). For studying effects 
of therapeutics against DMT2 symptoms, high fat 
feeding model is a valuable choice in preclinical 
protocols. According to Heydemann (2016) both 
male and female C57B1/6J mice were used. They 
were fed starting at 4 weeks to 20 weeks old, using 
a high fat feed plus high fructose feeding. This was 
found to be the best option for reflecting the human 
DMT2. Furthemore, age, exercise and duration of 
diet should be considered.

Animal models as a subject of antidiabetic research
At present, the goal of diabetic research 

is to find a cure for DM or at least to find active 
substances that would alleviate the symptoms of 
this disease. Preclinical studies use mainly animal 
models to study antidiabetic agents. The most 
commonly used models are rodents due to several 
advantages, such as genomic composition, robust 

breeding performance, ease of testing, diagnosis, 
biopsy, autopsy and ethical and economic reasons 
(Acharjee et al., 2013). 

Recent studies have focused on the effects of 
medicinal plants for the prevention and management 
of DMT2, as it is the most common form of DM. 
Such plants or their bioactive substances include 
antioxidant, cardio-protective, anti-inflammatory, 
anti-microbial, nephro-protective, anti-neoplastic, 
hepato-protective, immunomodulatory, hypoglycemic  
and anti-rheumatic effects and, therefore, demonstrated  
various pharmacological and biological effects on animal  
models (Kim et al., 2017; Pivari et al., 2019; Dupak 
et al., 2020). The specific mechanisms of bioactive  
compounds underlying these effects are still not 
fully described and understood. Furthermore, 
the most of antidiabetic effects of in vivo studies 
with natural products have not been verified 
in clinical studies. Hence, further investigation 
and application of natural products should be 
considered (Xu et al., 2018). When comparing in vitro  
and in vivo methods, in vitro are more cell specific 
and less time consuming than in vivo. On the other  
hand, human organism is a complex system which  

Figure 3. Pathophysiology of type 2 diabetes mellitus with high fat feeding impact  
 (Modified according to Heydemann, 2016).
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can be better understood by in vivo assays. 
Therefore, in vitro studies are recommended for 
specific research of mechanisms and in vivo for 
developing a drugs or evaluation of toxicological 
effects (Hasan et al., 2018).

CONCLUSION

The prevalence of diabetes mellitus is increasing  
worldwide and animal models play an important  
role in investigating the pathogenesis of human 
diabetes and its complications. The aim of this 
literature-based study was to review and compare 
the most common animal models reflecting 
the human diabetes mellitus. We conclude that 
universal animal model for studying diabetes does 
not exist yet and the choice of a model depends 
on the purpose of the study. When choosing a 
right model for either type 1 or 2 diabetes, it is 
recommended to use different models taking into 
account the diversity observed in diabetic patients.
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