USE OF PROBIOTIC BACTERIA IN RAINBOW TROUT (ONCORHYNCHUS MYKISS) AQUACULTURE: SHORT COMMUNICATION

Authors

  • Peter Popelka University of Veterinary Medicine and Pharmacy in Košice, Slovak Republic http://orcid.org/0000-0002-7070-0956
  • Dagmar Mudroňová University of Veterinary Medicine and Pharmacy in Košice, Slovak Republic
  • Jana Koščová University of Veterinary Medicine and Pharmacy in Košice, Slovak Republic
  • Adriana Fečkaninová University of Veterinary Medicine and Pharmacy in Košice, Slovak Republic

Keywords:

aquaculture, Oncorhynchus mykiss, probiotics, selection criteria

Abstract

In recent years, there has been a growing interest in controlling disease-related problems through alternative methods, since the use of chemotherapeutic agents may lead to occurrence of resistant bacteria. This short communication summarizes the current understanding of probiotic use in aquaculture of rainbow trout to prevent pathogenic bacteria, including the definition and mechanism of probiotics action, and describes their application, prospects and difficulties associated with their use in aquaculture. Our contribution to the use of probiotic bacteria in aquaculture represents isolation of lactic acid bacteria (LAB) from the intestinal content of rainbow trout (Oncorhynchus mykiss), subsequently potentially used as probiotics in order to improve health status of fish during fish farming. An effective probiotic must comply with criteria which determine its effect. Selection criteria are used to obtain suitable probiotic candidates for aquaculture including antimicrobial susceptibility test, determination of in vitro and in vivo survival conditions in the gastrointestinal tract of rainbow trout, and tolerance to different pH values, bile, temperature and the best growth properties.

References

Aravena-Román, M., Inglis, T. J. J., Henderson, B., Riley, T. V. & Chang, B. J. (2012). Antimicrobial susceptibilities of Aeromonas Strains isolated from clinical and environmental sources to 26 antimicrobial agents. Antimicrobial Agents and Chemotherapy, 56(2), 1110–1112.


Balta, F., Dengiz Balta, Z., Özgümüş, O. B. & Çağirgan, H. (2016). The Antimicrobial resistance and investigation of Yersinia ruckeri from rainbow trout (Oncorhynchus mykiss) farms in the Eastern Black Sea Region. Journal of Anatolian Environmental & Animal Sciences, 1(3), 72–76.


Bergheim, A. & Asgard, T. (1996). Waste production from aquaculture. In Baird, D. J., Beveridge, M. C. M., Kelly, L. A., Muir, J. F. (Eds.). Aquaculture and water resource management. Blackwell Science Ltd., Oxford, London, Edinburgh, Cambridge, Carlton, 50–80.


Bories, G., Brantom, P., Brufau de Barberà, J., Chesson, A., Cocconcelli, P. S., Debski, B., Dierick, N., Franklin, A., Gropp, J., Halle, I., Hogstrand, Ch., de Knecht, J., Leng, L., Lundebye Haldorsen, A. K., Mantovani, A., Mézes, M., Nebbia,C., Rambeck, W., Rychen, G., von Wright, A. & Wester, P. (2008). Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. EFSA Journal, 732, 1–15.


Brunt, J., Newaj-Fyzul, A. & Austin, B. (2007). The development of probiotics for the control of multiple bacterial diseases of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 30, 573–579.


Edun, O. M. & Akinrotimi, O. (2011). The Use of Probiotics in Aquaculture. Nigerian Journal of Biotechnology, 22, 34–39.


EFSA (2008). Scientific Opinion of the Panel on Animal Health and Animal Welfare on a request from the European Commission on the Animal welfare aspects of husbandry systems for farmed trout. EFSA Journal, 796, 1–22.


EFSA (2012). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). EFSA Journal, 6, 1–10.


EFSA BIOHAZ Panel (2013). (EFSA Panel on Biological Hazards). Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA Journal, 11, 1–107.


Ellis, T., North, B., Scott, A. P., Bromage, N. R., Porter, M. & Gadd, D. (2002). The relationships between stocking density and welfare in farmed rainbow trout. Journal of Fish Biology, 61(3), 493–531.


Fečkaninová, A., Koščová, J., Mudroňová, D., Popelka, P. & Toropilová, J. (2017). The use of probiotic bacteria against Aeromonas infection in salmonid aquaculture. Aquaculture, 469, 1–8.


Fečkaninová, A., Koščová, J., Mudroňová, D., Schusterová, P., Cingeľová Maruščáková, I. & Popelka, P. (2019). Characterization of two novel lactic acid bacteria isolated from the intestine of rainbow trout (Oncorhynchus mykiss, Walbaum) in Slovakia. Aquaculture, 506, 294–301.


Gomez-Gil, B., Roque, A. & Turnbull, J. F. (2000). The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture, 191, 259–270.


Ibrahem, M. D. (2015). Evolution of probiotic in aquatic world: potential effects, the current status in Egypt and recent prospectives. Journal of Advanced Research, 6, 765–791.


Irianto, A. & Austin, B. (2002). Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 25, 1–10.


Maricchiolo, G., Caccamo, L., Mancuso, M., Cusimano, G. M., Gai, F., Genovese, M., Ghonimy, A. & Genovese, L. (2015). Saccharomyces cerevisiae var. boulardii preserves the integrity of intestinal mucosa in gilthead seabream, Sparus aurata subjected to a bacterial challenge with Vibrio anguillarum. Aquaculture Research, 1–4.


Marques, A., Dhont, J., Sorgeloos, P. & Bossier, P. (2004). Evaluation of different yeast cell wall mutants and microalgae strains as feed for gnotobiotically grown brine shrimp Artemia franciscana. Journal of Experimental Marine Biology and Ecology, 312, 115–136.


Merrifield, D. L., Dimitroglou, A., Foey, A. Davies, S. J., Baker, R. T. M., Bøgwald, J., Castex, M. & Ringø, E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302, 1–18.


Muñoz–Atienza, E., Gómez-Sala, B., Araújo, C., Campanero, C., del Campo, R., Hernández, P. E., Herranz, C. & Cintas, L. M. (2013). Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiology, 13, 1–22.


Newaj-Fyzul, A., Al-Harbi, A. H. & Austin, B. (2014). Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture, 431, 1–11.


Pokorný, J., Adámek, Z., Šrámek, V. & Dvořák, J. (2003). Pstruhařství. 3. vyd. Praha: Informatorium, 284 p. ISBN 80-7333-022-9.


Sener, E. (2012). Farming of the Rainbow Trout, Oncorhynchus mykkis, in the Black Sea Region of Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 2, 93–96.


Sica, M. G., Brugnoni. L. I., Marucci, P. L. & Cubitto, M. A. (2012). Characterisation of probiotic properties of lactic acid bacteria isolated from an esturine environment for application in rainbow trout (Oncorhynchus mykiss, Walbaum). Antonie van Leeuwenhoek, 101, 869–879.


Van Doan, H., Hoseinifar, S. H., Khanongnuch, C., Kanpiengjai, A., Unban, K., Van Kim, V. & Srichaiyo, S. (2018). Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture, 491, 96–100.


Viadero, Jr. R. C., Cunningham, J. H., Semmens, K. J. & Tierney, A. E. (2005). Effluent and production impacts of flow-through aquaculture operations in West Virginia. Aquaculture Engineering, 33, 258–270.


Wong, S. & Rawls, J. F. (2012). Intestinal microbiota composition in fishes is influenced by host ecology and environment. Molecular Ecology, 21, 3100–3102.

Downloads

Published

2020-03-31

Issue

Section

Short Communication