EXPLORING THE STRUCTURE OF HAPLOTYPE BLOCKS, RUNS OF HOMOZYGOSITY AND EFFECTIVE POPULATION SIZE IN KHUZESTANI RIVER BUFFALO

Authors

  • Pourya Davoudi Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
  • Hossein Moradi-Shahrbabak Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
  • Hassan Mehrabani-Yeganeh Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
  • Seyed Mohammad Ghoreishifar Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
  • Sajad Gholami Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
  • Rostam Abdollahi-Arpanahi Departments of Animal and Poultry Science, College of Aburaihan, University of Tehran, Pakdasht, 33916-53755, Iran

Keywords:

haplotype block, runs of homozygosity, effective population size, inbreeding, buffalo

Abstract

Buffalo is considered as one of the most important species of livestock in many developing countries for milk and meat production. Knowledge about the characterization of haplotype block structure and about the genetic diversity of a population are fundamental factors for the success of genome-wide association and genomic selection studies. Parameters such as effective population size (Ne), Heterozygosity, runs of homozygosity (ROH) and inbreeding based on ROH (FROH) can give new insight about the level of genetic diversity for the population under selection. The main objective of this study was to investigate the haplotypic structure and genetic diversity in Iranian river buffalo (n = 123) using the Axiom Buffalo 90 K Genotyping Array. Analysis revealed 1726 haplo-blocks spanning 8.2 % of the genome and containing 12.4 % of all Single-nucleotide polymorphism (SNPs). The contemporary (5 generations ago) effective population size was approximately 240 animals. Totally, 992 ROH were identified, most of which were short (59 %) and had a length less than 10 Mb. Average observed heterozygosity and ROH-based inbreeding were 0.387 and 0.045, respectively. Our results will provide practical information to assist the genomic selection (GS) and genome-wide association study (GWAS) in buffaloes. Furthermore, the results of Ne, heterozygosity and ROH analyses displayed new knowledge about the level of genetic diversity in the Khuzestani river buffalo population.

References

Barbato, M., Orozco-terWengel, P., Tapio, M. & Bruford, M. W. (2015). SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Frontiers in Genetics, 6, 109.Doi: 10.3389/fgene.2015.00109



Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. (2004). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. Doi: 10.1093/bioinformatics/bth457



Biegelmeyer, P., Gulias-Gomes, C. C., Caetano, A. R., Steibel, J. P. & Cardoso, F. F. (2016). Linkage disequilibrium, persistence of phase and effective population size estimates in Hereford and Braford cattle. BMC Genetics, 17, 32. Doi: 10.1186/s12863-016-0339-8



Browning, S. R. & Browning, B. L. (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. The American Journal of Human Genetics, 81(5), 1084–1097. Doi: 10.1086/521987



Colli, L., Milanesi, M., Vajana, E., Iamartino, D., Bomba, L., Puglisi, F., Del Corvo, M., Nicolazzi, E. L., Ahmed, S. S. Herrera, J. R., Cruz, L., Zhang, S., Liang, A., Hua, G., Yang, L., Hao, X., Zuo, F., Lai, S. J., Wang, S., Liu, R., Gong, Y., Mokhber, M., Mao, Y., Guan, F., Vlaic, A., Vlaic, B., Ramunno, L., Cosenza, G., Ahmad, A., Soysal, I., Ünal, E. Ö., Ketudat-Cairns, M., Garcia, J. F., Utsunomiya, Y. T., Baruselli, P. S., Amaral, M. E. J., Parnpai, R., Drummond, M. G., Galbusera, P., Burton, J., Hoal, E., Yusnizar, Y., Sumantri, C., Moioli, B., Valentini, A., Stella, A., Williams, J. L. & Ajmone-Marsan P. (2018). New Insights on Water Buffalo Genomic Diversity and Post-Domestication Migration Routes From Medium Density SNP Chip Data. Frontiers in Genetics, 9, 53. Doi: 10.3389/fgene.2018.00053



Corbin, L. J., Liu, A. Y., Bishop, S. C. & Woolliams, J. A. (2012). Estimation of historical effective population size using linkage disequilibria with marker data. Journal of Animal Breeding and Genetics, 129(4), 257–270. Doi: 10.1111/j.1439-0388.2012.01003.x



Deng, T., Liang, A., Liu, J., Hua, G., Ye, T., Liu, S., Campanile G., Plastow, G., Zhang, C., Wang, Z., Salzano, A., Gasparrini, B., Cassandro, M., Riaz, H., Liang, X. & Yang, L. (2019). Genome-Wide SNP Data Revealed the Extent of Linkage Disequilibrium, Persistence of Phase and Effective Population Size in Purebred and Crossbred Buffalo Populations. Frontiers in Genetics, 9, 688. Doi: 10.3389/fgene.2018.00688



Fallahi, M. H., Shahrbabak, H. M., Shahrbabak, M. M., Arpanahi, R. A., & Gholami, S. (2019). Detection of Haplotypic Structure for Genome of Azerbaijani Buffalo Using High Density SNP Markers. Russian Journal of Genetics, 55(8), 1000–1007. Doi: 10.1134/S1022795419080040



Frankham, R. (2005). Genetics and extinction. Biological Conservation, 126(2), 131-140. Doi: 10.1016/j.biocon.

05.002



Frankham, R., Bradshaw, C. J. A. & Brook, B. W. (2014). Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56–63. Doi: 10.1016/j.biocon.2013.12.036



Ghoreishifar, S. M., Moradi-Shahrbabak, H., Moradi-Shahrbabak, M., Nicolazzi, E. L., Williams, J. L., Iamartino, D. & Nejati-Javaremi, A. (2018). Accuracy of imputation of single-nucleotide polymorphism marker genotypes for water buffaloes (Bubalus bubalis) using different reference population sizes and imputation tools. Livestock Science, 216, 174–182. Doi: 10.1016/ j.livsci.2018.08.009



Ghoreishifar, S. M., Moradi-Shahrbabak, H., Parna, N., Davoudi, P. & Khansefid, M. (2019). Linkage disequilibrium and within-breed genetic diversity in Iranian Zandi sheep. Archives Animal Breeding, 62, 143–151. Doi: 10.5194/aab-62-143-2019



Ghoreishifar, S. M., Moradi-Shahrbabak, H., Fallahi M. H., Jalil Sarghale, A., Moradi-Shahrbabak, M., Abdollahi-Arpanahi, R. & Khansefid, M. (2020). Genomic measures of inbreeding coefficients and genome-wide scan for runs of homozygosity islands in Iranian river buffalo, Bubalus bubalis. BMC Genetics, 21, 16. Doi: 10.1186/s12863-020-0824-y



Karimi, K., Koshkoiyeh, A. E., Fozi, M. A., Porto-Neto, L. R. & Gondro, C. (2016). Prioritization for conservation of Iranian native cattle breeds based on genome-wide SNP data. Conservation Genetics, 17, 77–89. Doi: 10.1007/s10592-015-0762-9



Khatkar, M. S., Nicholas, F. W., Collins, A. R., Zenger, K. R., Cavanagh, J. A., Barris, W., Schnabel, R. D., Taylor, J. F. & Raadsma, H. W. (2008). Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genomics, 9, 187. Doi: 10.1186/1471-2164-9-187



Low, W. Y., Tearle, R., Bickhart, D. M., Rosen, B. D., Kingan, S. B., Swale, T., Thibaud-Nissen, F., Murphy, T. D., Young, R., Lefevre, L., Hume, D. A., Collins, A., Ajmone-Marsan, P., Smith, T. P. L. & Williams, J. L. (2019). Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity. Nature Communications, 10, 260. Doi: 10.1038/s41467-018-08260-0



Mastrangelo, S., Ciani, E., Sardina, M. T., Sottile, G., Pilla, F. & Portolano, B. (2018). Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds. Animal Genetics, 49(1), 71–81. Doi:10.1111/age.12634

McQuillan, R., Leutenegger, A. L., Abdel-Rahman, R., Franklin, C. S., Pericic, M., Barac-Lauc, L., Smolej-Narancic, N., Janicijevic, B., Polasek, O., Tenesa, A., Macleod, A. K., Farrington, S. M., Rudan, P., Hayward, C., Vitart, V., Rudan, I., Wild, S. H., Dunlop, M. G., Wright, A. F., Campbell, H., & Wilson, J. F. (2008). Runs of homozygosity in European populations. The American Journal of Human Genetics, 83(3), 359–372. Doi: 10.1016/j.ajhg.2008.08.007



Nicolazzi, E. L., Iamartino, D. & Williams, J. L. (2014). AffyPipe: an open-source pipeline for Affymetrix Axiom genotyping workflow. Bioinformatics, 30(21), 3118–3119. Doi: 10.1093/bioinformatics/btu486



Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J. & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559–575. Doi: 10.1086/519795



Qanbari, S., Pimentel, E. C., Tetens, J., Thaller, G., Lichtner, P., Sharifi, A. R. & Simianer, H. (2010). The pattern of linkage disequilibrium in German Holstein cattle. Animal Genetics, 41(4), 346–356. Doi: 10.1111/j.1365-2052.2009.02011.x



Safari, A., Hossein-Zadeh, N. G., Shadparvar, A. A. & Abdollahi-Arpanahi, R. (2018). A review on breeding and genetic strategies in Iranian buffaloes (Bubalus bubalis). Tropical Animal Health And Production, 50(4), 707–714. Doi: 10.1007/s11250-018-1563-1



Safari, A., Shadparvar, A. A., Hossein-Zadeh, N. G. & Abdollahi-Arpanahi, R. (2019). Economic values and selection indices for production and reproduction traits of Iranian buffaloes (Bubalus bubalis). Tropical Animal Health and Production, 51(5), 1209–1214. Doi: 10.1007/s11250-019-01811-7



Santana, M., Aspilcueta-Borquis, R., Bignardi, A., Albuquerque, L. G. & Tonhati, H. (2011). Population structure and effects of inbreeding on milk yield and quality of Murrah buffaloes. Journal of Dairy Science, 94(10), 5204–5211. Doi: 10.3168/jds.2011-4377



Shokrollahi, B. & Hasanpur, K. (2014). Study of individual lactation patterns of Iranian dairy buffaloes. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 115(2), 125–133.

Shokrollahi, B., Amirinia, C., Djadid, N. D., Amirmozaffari, N. & Kamali, M. A. (2010). Development of polymorphic microsatellite loci for Iranian river buffalo (Bubalus bubalis). African Journal of Biotechnology, 8(24), 6750–6755. Doi: 10.4314/ajb.v8i24.68662



Sved, J. (1971). Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theoretical Population Biology, 2(2), 125–141. Doi: 10.1016/0040-5809(71)90011-6

Tenesa, A., Navarro, P., Hayes, B. J., Duffy, D. L., Clarke, G. M., Goddard, M. E. & Visscher, P. M. (2007). Recent human effective population size estimated from linkage disequilibrium. Genome Research, 17(4), 520–526. Doi: 10.1101/gr.6023607



Warriach, H., McGill, D., Bush, R., Wynn, P. & Chohan, K. (2015). A review of recent developments in buffalo reproduction ─ a review. Asian-Australasian Journal of Animal Sciences, 28(3), 451–455. Doi: 10.5713/ajas.14.0259

Zhao, F., Wang, G., Zeng, T., Wei, C., Zhang, L., Wang, H., Zhang, S., Liu, R., Liu, Z. & Du, L. (2014). Estimations of genomic linkage disequilibrium and effective population sizes in three sheep populations. Livestock Science, 170, 22–29. Doi: 10.1016/j.livsci.2014.10.015



Zhu, M., Zhu, B., Wang, Y., Wu, Y., Xu, L., Guo, L., Yuan, Z., Zhang, L., Gao, X. & Gao, H. (2013). Linkage disequilibrium estimation of chinese beef simmental cattle using high-density SNP panels. Asian-Australasian Journal of Animal Sciences, 26(6), 772–779. Doi: 10.5713/ajas.2012.12721



Zimin, A. V., Delcher, A. L., Florea, L., Kelley, D. R., Schatz, M. C., Puiu, D., Hanrahan, F., Pertea, G., Van Tassell, C. P., Sonstegard, T. S., Marçais, G., Roberts, M., Subramanian, P., Yorke, J. A. & Salzberg, S. L. (2009). A whole-genome assembly of the domestic cow, Bos taurus. Genome Biology, 10(4), R42. Doi:10.1186/gb-2009-10-4-r42

Downloads

Published

2020-06-25

Issue

Section

Articles