NEGATIVE IMPACT OF CRYOPRESERVATION AND CRYODAMAGE ON BOVINE SPERMATOZOA: A REVIEW

A Review

Authors

  • Filip Benko Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Nitra, Slovak Republic
  • Michal LENICKÝ Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Nitra, Slovak Republic
  • Norbert LUKÁČ Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Nitra, Slovak Republic
  • Eva TVRDÁ Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Nitra, Slovak Republic

Keywords:

cryopreservation, bovine spermatozoa, cryodamage

Abstract

Cryopreservation of bovine spermatozoa represents a powerful technology for the distribution of livestock and improvement of the availability and quality of the genetic material in numerous ruminant species. Nevertheless, a significant amount of sperm cells shows typical features of cryodamage, which may affect the quality and fertility potential of thawed samples used for artificial insemination. Low temperatures during the freezing process could cause several issues, which may lead to irreversible cell damage. Most common contraindications related to cryopreservation include the presence of ice crystals, oxidative stress, microbial contamination, cryocapacitation or a possible toxicity of cryoprotectants. However, cryobiology plays an important role in the reproduction of domestic animals and this is the reason why it is necessary to study sperm fertility markers and the effect of cryopreservation on the sperm viability. A more detailed research could improve new protocols and advanced technologies to improve the quality of cryopreserved samples in the future.

References

<div align="justify">Amirat-Briand, L., Bencharif, D., Vera-Munoz, O., Bel Hadj Ali, H., Destrumelle, S., Desherces, S., Schmidt, E., Anton, M. & Tainturier, D. (2009). Effect of glutamine on post-thaw motility of bull spermatozoa after association wuth LDL (low density lipoproteins) extender: preliminary results. Theriogenology, 71, 1209–1214. https://doi.org/10.1016/j.theriogenology.2008.10.002
<br>Anand, M., Baghel, G. & Yadav, S. (2015). Effect of egg yolk concentration and washing on sperm quality following cryopreservation in Barbari buck semen. Journal of Applied Animal Research, 45(1), 560–565. https://doi.org/10.1080/09712119.2016.1232265
<br>Benson, J. D., Woods, E. J. & Critser, J. K. (2012). The cryobiology of spermatozoa. Theriogenology, 78(8), 1682–1699.
<br>Ezzati, M., Shanehbandi, D., Hamdi, K., Rahbar, S. & Pashaiasl, M. (2020). Influence of cryopreservation on structure and function of mammalian spermatozoa: an overview. Cell and Tissue Banking, 21, 1–15. https://doi.org/10.1007/s10561-019-09797-0
<br>Gao, D. & Critser, J. K. (2000). Mechanisms of Cryoinjury in Living Cells. ILAR Journal, 41(4), 187–196. https://doi.org/10.1093/ilar.41.4.187
<br>Hezavehei, M., Sharafi, M., Kouchesfahani, H. M., Henkel, R., Agarwal, A., Esmaeili, V. & Shahverdi, A. (2018). Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reproductive Biomedicine, 37(3), 327–339. https://doi.org/10.1016/j.rbmo.2018.05.012
<br>Ickowicz, D., Finkelstein, M. & Breitbart, H. (2012). Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian Journal of Andrology, 14(6), 816–821. https://doi.org/10.1038/aja.2012.81
<br>Kumar, R., Singh, V. K., Chhillar, S. & Atreja, S. K. (2013). Effect of supplementation of taurine or trehalose in extender on immunolocalization of tyrosine phosphoproteins in buffalo and cattle (Karan Fries) cryopreserved spermatozoa. Reproduction in Domestic Animals, 48(3), 407–415. https://doi.org/10.1111/rda.12088
<br>Ledesma, A., Zalazar, L., Buchelly Imbachi, F., Pastore, J. I., Brown, P., Eddy, E. M., Hozbor, F. & Cesari, A. (2019). Recombinant peptide reverses cryo-capacitation in ram sperm and improves in vitro fertilization. Animal Reproduction Science, 207(8), 61–72. https://doi.org/10.1016/j.anireprosci.2019.05.016
<br>Len, J. S., Koh, W. S. D. & Tan, S. (2019). The roles of reactive oxygen species and antioxidants in cryopreservation. Bioscience Reports, 39(8), 1–25. https://doi.org/10.1042/bsr20191601
<br>Morrel, J. M. (2006). Update on semen technologies for animal breeding. Reproduction in Domestic Animals, 41(1), 63–67. https://doi.org/10.1111/j.1439-0531.2006.00621.x
<br>Morris, J. G., Acton, E., Murray, B. J. & Fonseca, F. (2011). Freezing injury: The special case of the sperm cell. Cryobiology, 64(2), 71–80. https://doi.org/10.1016/j.cryobiol.2011.12.002
<br>Ombelet, W. & Van Robays, J. (2015). Artificial insemination history: hurdles and milestones. Facts Views and Vision, 7(2), 137–143.
<br>Ozaydin, T. & Celik, I. (2012). Histological, Histochemical and Immunohistochemical Investigations on the Developing Small Intestines of Broiler Embryos. Journal of Animal and Veterinary Science, 11(6), 2934–2944. https://doi.org/10.3923/javaa.2012.2936.2944
<br>Ӧztürk, A. E. (2019). Cryobiology and Cryopreservation of Sperm. In M. Quain (Ed.), Cryopreservation – Current Advances and Evaluations [online PDF]. Retrieved from https://www.intechopen.com/books/cryopreservation-current-advances-and-evaluations/cryobiology-and-cryopreservation-of-sperm
<br>Peris-Frau, P., Soler, A. J., Iniesta-Cuerda, M., Martín-Maestro, A., Sánchez-Ajofrín, I., Medina-Chávez, D. A., Fernández-Santos, M. R., García-Álvarez, O., Maroto-Morales, A., Montoro, V. & Garde, J. J. (2020). Sperm Cryodamage in Ruminants: Understanding the Molecular Changes Induced by the cryopreservation Process to Optimize Sperm Quality. International Journal of Molecular Sciences, 21(8), 2781. https://doi.org/10.3390/ijms21082781
<br>Polge, C., Smith, A. U. & Parkers, A. S. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 149(4172), 666. DOI: 10.1038/164666a0
<br>Reda, A. A., Almaw, G., Abreha, S., Tadeg, W. & Tadesse, B. (2020). Bacteriospermia and Sperm Quality of Cryopreserved Bull Semen Used in Artificial Insemination of Cows in South Wollo Zone, Ethiopia. Veterinary Medicine International, 2020, 1–11. https://doi.org/10.1155/2020/2098315
<br>Sieme, H., Oldenhof, H. & Wolkers, W. (2016). Mode of action of cryoprotectants for sperm preservation. Animal Reproduction Science, 169, 2–5. https://doi.org/10.1016/j.anireprosci.2016.02.004
<br>Singh, V. K., Kumar, R. & Atreja, S. K. (2014). Cryo-survival, cryo-capacitation and oxidative stress assessment of buffalo spermatozoa cryopreserved in new soya milk extender. Livestock Science, 160, 214–218. https://doi.org/10.1016/j.livsci.2013.12.013
<br>Sisay, T. A., Amare, A. & Mekuriaw, Z. (2012). Quality evaluation of cryopreserved semen in artificial insemination of cattle in selected districts of Western Gojjam zone of Amhara region. Journal of Reproduction and Infertility, 3(1), 1–7.
<br>Talukdar, D., Ahmed, K., Sinha, S., Deori, S., Das, G. C. & Talukdar, P. (2017). Cryopreservation induces capacitation-like changes of the swamp buffalo spermatozoa. Buffalo Bulletin, 36(1), 221–230.
<br>Tatone, C., Di Emidio, G., Vento, M., Ciriminna, R. & Artini, P. G. (2010). Cryopreservation and oxidative stress in reproductive cells. Gynecological Endocrinology, 26(8), 563–567. https://doi.org/10.3109/09513591003686395
<br>Ugur, R. M., Abdelrahman, A. S., Evans, H. C., Gilmore, A. A., Hitit, M., Arifianti, R., Purwantara, B., Kaya, A. & Memili, E. (2019). Advances in Cryopreservation of Bull Sperm. Frontiers in Veterinary Medicine, 6(8). https://doi.org/10.3389/fvets.2019.00268
<br>Varela, E., Rojas, M. & Restrepo, G. (2020). Membrane stability and mitochondrial activity of bovine sperm frozen with low-density lipoproteins and trehalose. Reproduction in Domestic Animals, 55(2), 146–153. https://doi.org/10.1111/rda.13599
<br>Yueng, Ch. H. (2010). Aquaporins in spermatozoa and testicular germ cells: identification and potential role. Asian Journal of Andrology, 12(4), 490–499. https://doi.org/10.1038/aja.2010.40</div>

Downloads

Published

2021-09-30

Issue

Section

Reviews