GROWTH DESCRIPTION OF PURE AND CROSSBRED TURKEYS USING NON-LINEAR MODELS IN HOT AND HUMID TROPICAL ENVIRONMENT

Authors

  • Babatunde Moses ILORI Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B. 2240 Abeokuta Ogun state, Nigeria
  • Kayode AKANO Department of Agricultural Education, Michael Otedola College of Primary Education, Noforija, Epe, Lagos State, Nigeria
  • Sunday Olusola PETERS Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA
  • Samuel Olutunde DUROSARO Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B. 2240 Abeokuta Ogun state, Nigeria
  • Sammad Folagbade OLAYIWOLA Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B. 2240 Abeokuta Ogun state, Nigeria
  • David Oluwafemi OGUNTADE Department of Animal Science, Ambrose Alli University, Ekpoma Edo State, Nigeria
  • Michael Ohiokhuaobo OZOJE Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B. 2240 Abeokuta Ogun state, Nigeria

DOI:

https://doi.org/10.36547/sjas.775

Keywords:

turkey, non-linear growth model, logistics, Gompertz, von Bertalanffy

Abstract

This study was conducted to compare three non-linear growth models (Logistics, Gompertz and Von Bertalanffy) in describing the growth of 360 turkeys of three genotypes (exotic, crossbred and local). The growth curve parameters - A, B and K for each growth model were estimated for each turkey using the NLIN procedure (Marquart algorithm) for the Bayesian approach with a fixed-effect model. The best fit of the three models was also estimated. A comparison was done among the three models using Akaike Information Criteria (AIC) and the Bayesian Information Criteria (BIC). Pearson product-moment correlation coefficient (r), the correlation coefficient, was used to examine the linear relationship between two quantities, A and K growth model parameters. For comparison of growth models parameter predicted, the Von Bertalanffy's model predicted the smallest value in both criteria for all the male and local female turkeys, while Gompertz's growth model had the smallest predicted value in both criteria for the female exotic and female crossbred turkeys. Based on the goodness of fit using the Bayesian Model Choice Criteria (Deviance Information Criteria), Von Bertalanffy's growth model showed the best fit. However, the difference between Bertalanffy's and Gompertz's growth models is very minimal, thus, making both models suitable for modeling the growth curve of domestic turkey and to consider how this weight is attained.

References

Abe, O. S. (2016). Application of Non-linear models to the growth and development of Nigerian indigenous and other locally adapted chickens. Ph.D. Thesis. Federal University of Agriculture, Abeokuta, College of Animal Sciences and Livestock Production, Abeokuta.

Agbonika, D. A. & Folorunsho, S. T. (2020). Turkey Production in Gwagwalada Area Council of Federal Capital Territory, Abuja, Nigeria. World Journal of Innovative Research, 8(4), 98−103. https://doi.org/10.31871/WJIR.8.4.19

Arando, A., González-Ariza, A., Lupi, T. M., Nogales, S., León, J. M., Navas-González, F. J., Delgado, J. V. & Camacho, M. E. (2021). Comparison of non-linear models to describe the growth in the Andalusian turkey breed. Italian Journal of Animal Science, 20(1), 1156−1167. https://doi:10.1080/1828051X.2021.1950054

Assan, N. (2015). Methodology and factors influencing the association of body weight, performance parameters with linear body measurements assessment in poultry. Scientific Journal of Pure and Applied Sciences, 4, 200−210.

Berry, D. P., Horan, B. & Dillon, P. (2005). Comparison of growth curves of three strains of female dairy cattle. Animal Science, 80, 151−160. https://doi.org/10.1079/

ASC41790151

Carrijo, S. M. & Duarte, F. A. M. (1999). Description and comparison of growth parameters in Chianina and Nelore cattle breeds. Genetics and Molecular Biology, 22, 187−196. https://www.scielo.br/j/gmb/a/WsqCvyt3BZ3CLCKf53ftTTx/?lang=en

Climate Data. (2021). Retrieved from https://www. climatedata.com on June 2, 2021.

Coyne, M. A., Vaske, J. C., Boisvert, D. L. & Wright, J. P. (2015). Sex differences in the stability of self-regulation across childhood. Journal of Developmental and Life-Course Criminology, 1(1), 4−20. http:// 10.1007/s40865-015-0001-6

Durosaro, S. O., Jeje, O. S., Ilori, B. M., Iyasere, O. S. & Ozoje, M. O. (2021). Application of non-linear models in description of growth of dual purpose FUNAAB Alpha chickens. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 122(2), 147−158. https://doi.org/10.17170/kobra-202010191973

Ersoy, I. E., Mendeş, M. & Aktan, S. (2005). Growth Curve Establishment for American Bronze Turkeys. Archiv fur Tierzucht, 49(3), 293-299. DOI:10.5194/aab-49-293-2006

FAO. (2009). The state of food and agriculture: livestock in the balance. Rome, Italy.

France, J. & Thornley, J. H. M. (1984). Growth functions. In: Mathematical Models in Agriculture. France, J. and Thornley, J. H. M. ed. Butterworths, London. pp. 75−93.

Galeano-Vasco, L. F., Ceron-Munoz, M. F. & Narvaez-Solarte, W. (2014). Ability of non-linear mixed models to predict growth in laying hens. Revista Brasileria de Zootecnia, 43(11), 573−578. https://www.scielo.br/j/rbz/a/3yJcwGNFjC7rx6kxQr9ghsq/?lang=en

Galeano-Vasco, L. & Cerón-Muñoz, M. F. (2013). Modelación del crecimiento de pollitas mediante el uso de redes neuronales. Revista MVZ de Córdoba, 18, 3861−3867. https://dialnet.unirioja.es/servlet/articulo?codigo=4699438

Gbangboche, A. B., Glele-Kakai, R., Salifou, S., Albuquerque, L. G. & Leroy, P. L. (2008). Comparison of non-linear growth models to describe the growth curve in West African Dwarf sheep. Animal, 2, 1003−1012. DOI:10.1017/S1751731108002206

Gompertz, B. (1825). On nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society, 115, 513−585.

Google Maps. (2021). Federal University of Agriculture, Abeokuta, Ogun State, Nigeria. Retrieved from https://www.google.com.ng/maps/@7.223279,3.437235,14zon June 2, 2021.

Gossett, J., Simpson, P., Casey, P., Whiteside-Mansell, L., Bradley, R. & Jo, C. H. (2007). Growing Growth Curves Using PROC MIXED and PROC NLMIXED. University of Arkansas for Medical Sciences, Little, Rock, Arkansas

Grossman, M. & Bohren, B. B. (1985). Logistic growth curve of chickens: heritability of parameters. Journal of Heredity, 76, 459−462. https://doi: 10.1093/oxfordjournals.jhered.a110145

Grossman, M., Bohren, B. B. & Anderson, V. L. (1985). Logistic growth curve of chickens: a comparison of techniques to estimate parameters. Journal of Heredity, 76, 397−399. https://pubmed.ncbi.nlm.nih.gov/4056375/

Ilori, B. M., Peters, S. O., Ikeobi, C. O. N., Bamgbose, A. M., Isidahomen, C. E. & Ozoje, M. O. (2010). Comparative assessment of growth in pure and crossbred turkeys in a humid tropical environment. International Journal of Poultry Science, 9, 368−375. DOI:10.3923/ijps.2010.368.375

Ilori, B. M., Durosaro, S. O., Isidahomen, C. E., Uthman, N. A., Komolafe, D. T., Akano, K. & Ozoje, M. O. (2019). Effect of Feather Color on Heat Tolerance Traits and Growth Performance of Nigerian Indigenous Turkey. The Pacific Journal of Science and Technology, 20(2), 231−240.

Ilori, B. M., Oguntade, D. O., Abiona, J. A., Durosaro S. O., Isidahomen, C. E. & Ozoje, M. O. (2021). Genotypic differences in body weight and physiological response of local and exotic turkeys challenged with Salmonella typhimurium. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 122(2), 219–230. https://doi.org/10.17170/kobra-202110274960

Ilori, B. M., Oguntade, D. O., Akano, K., Durosaro, S. O. & Ozoje, M. O. (2017). Reproductive performance, feed intake and efficiency of indigenous and crossbred turkeys. Journal of Agricultural Science and Environment, 18(1&2), 47−58.

Ilori, B. M., Peters, S. O., Yakubu, A., Imumorin, I. G., Adeleke, M. A., Ozoje, M. O., Ikeobi, C. O. N. &. Adebambo, O. A. (2011). Physiological adaptation of local, exotic and crossbred turkeys to the hot and humid tropical environment of Nigeria. Acta Agriculturae Scandinavica, Section A – Animal Science, 61(4), 204−209. http://dx.doi.org/10.1080/09064702.2012.656141

Juárez-Caratachea, A., Delgado-Hurtado, I., Gutiérrez-Vázquez, E., Salas-Razo, G., Ortiz-Rodríguez, R. & Segura-Correa, J. C. (2019). Describing the growth curve of local turkey using non-linear models. Revista MVZ Cordoba, 24(1). http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-02682019000107104

Kizilkaya, K., Balcioglu, M. S., Yolcu, H. I. & Kabarag, K. (2004). The application of exponential method in the analysis of growth curves for Japanese quail. Archiv für Geflugelkunde, 69(5), 193−198. https://www.semanticscholar.org/paper/The-application-of-exponential-method-in-the-of-for-Ki-Balci/176945e5729540299b64afda0841def279d89522

Kizilkaya, K., Balcioglu, M. S., Yolcu, H. I., Karabag, K. & Genc, I. H. (2006). Growth curve analysis using nonlinear mixed model in divergently selected Japanese quails. Archiv für Geflugelkunde, 70(4), 181−186. https://www.european-poultry-science.com/Growth-curve-analysis-using-nonlinear-mixed-model-in-divergently-selected-Japanese-quails,QUlEPTQyMTcyNTcmTUlEPTE2MTAxNA.html

Laird, A. K. (1964). Dynamics of tumor growth. British Journal of Cancer, 18, 490-502. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2071101/

Lake, P. E. (1962). Artificial Insemination in Poultry. In: Maile, J. P. (eds). The Semen of the Animals and Artificial Insemination. Commonwealth Agricultural Bureau, Bucks, England, 331−335.

Lawrence, T. L. J. & Fowler, V. R. (2002). Growth of Farm Animals, 2nd ed. CAB International, Wallingford, UK.

Lewis, R. M., Emmans, G. C. & Simm, G. (2002). A description of the growth of sheep and its genetic analysis. Animal Science, 74, 51−52. https://www.cambridge.org/core/journals/animal-science/article/abs/description-of-the-growth-of-sheep-and-its-genetic-analysis/0FF2E183D2DD833319332521F501E853

Mead, R., Curnow, R. N. & Hasted, A. M. (1993). Statistical methods in agriculture and experimental biology. Chapman and Hall, UK.

Mignon-Grasteau, S., Beaumont, C., Lebihan-Duval, E., Poivey, J. P., Derochambeau, H. & Richard, F. H. (1999). Genetic parameters of growth curve parameters in male and female chickens. British Poultry Science, 40, 44−51. https://doi.org/10.1080/00071669987827

Narinc, D., Karaman, E., Firat, M. Z. & Aksoy, T. (2017). Comparison of Non-linear Growth Models to Describe the Growth in Japanese Quail. Journal of Animal and Veterinary Advances, 9(14), 1961−1966. https://doi: 10.3923/javaa.2010.1961.1966

Oleforuh-Okoleh, V. U., Kurutsi, R. F. & Ideozu, H. M. (2017). Phenotypic evaluation of growth traits in two Nigerian local chicken genotypes. Animal Research International, 14(1), 2611−2618.

Ozoje, M. O., Peters, S. O. & Ojikutu, S. I. (2007). Analysis of growth curve parameters of N'Dama cattle raised in the humid tropics. Nigerian Journal of Animal Production, 34(1), 1−13.

Pomar, C., van Milgen, J. & Remus, A. (2009). Applying precision feeding techniques in growing-finishing pig operations. Poultry and Swine Production. Revista Brasileira de Zootecnia, 38(supl. especial), 226−237. https://doi.org/10.1590/S1516-35982009001300023

Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290−300.

Rivera-Torres, V., Ferket, P. R. & Sauvant, D. (2011). Mechanistic modeling of turkey growth response to genotype and nutrition. Journal of Animal Science, 89(10), 3170−88. DOI: 10.2527/jas.2010-3504.

Rizzi, C., Contiero, B. & Cassandro, M. (2013). Growth patterns of Italian local chicken populations. Poultry Science, 92, 2226−2235. https://pubmed.ncbi.nlm.nih.gov/23873574/

Roush, W. B. & Branton, S. L. (2005). A Comparison of Fitting Growth Models with a Genetic Algorithm and Nonlinear Regression. Poultry Science, 84, 494−502. DOI: 10.1093/ps/84.3.494

Segura-Correa, J. C., Santos-Ricalde, H. & Palma-Avila, I. (2017). Nonlinear model to describe growth curves of commercial turkey in the tropics of Mexico. Brazilian Journal of Poultry Science, 19(1), 27−32. https://www.scielo.br/j/rbca/a/qgNCRFHKqGYrWPwKFNbsYrw/?lang=en

Sengul, T. & Kiraz, S. (2005). Non-Linear Model for Growth Curves in Large White Turkeys. Turkish Journal of Veterinary Animal Science, 29, 331−337. https://dergipark.org.tr/tr/download/article-file/132781

Sezer, M. & Tarhan, S. (2005). Model parameters of growth curves of three meat-type lines of Japanese quail. Czech Journal of Animal Science, 50(1), 22−30. https://www.agriculturejournals.cz/publicFiles/52512.pdf

Sogut, B., Celik, S., Ayasan, T. & Inci, H. (2016). Analyzing Growth Curves of Turkeys Reared in Different Breeding Systems (Intensive and Free-Range) with some Nonlinear Models. Brazilian Journal of Poultry Science, 18(04) Oct-Dec 2016. https://doi.org/10.1590/1806-9061-2016-0263

Taylor, St. C. S. & Fitzhugh, H. A. Jr. (1971). Genetic relationships between matured weights and time taken to mature within a breed. Journal of Animal Science, 33, 726−735. https://doi.org/10.2527/jas1971.334726x

Thornley, J. H. M. & France, J. (2007). Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal, and Ecological Sciences. 2nd ed. CABI Publishing, Wallingford, UK.

Von Bertalanffy, L. (1957). Quantitative laws for metabolism and growth. Quarterly Reviews of Biology, 32, 217−232.

Von Bertalanffy, L. (1960). Theoretische Biologie, Zweiter Band: Stoffwechsel, Wachstum. A Francke A. G. Verlag, Bern, Switzerland, 418 pp.

Zhao, Z. H., Li, S. F., Huang, H. Y., Li, C. M., Wang, Q. B. & Xue, L. G. (2015). Comparative study on growth and developmental model of indigenous chicken breeds in China. Open Journal of Animal Science, 5, 219−223. https://www.scirp.org/journal/paperinformation.aspx?paperid=560064. https://doi: 10.1007/s10815-012-9718-x

Downloads

Published

2022-10-24

Issue

Section

Articles