EFFECT OF VITAMIN C (ASCORBIC ACID) SUPPLEMENTATION ON GROWTH PERFORMANCE, ECONOMIC INDICES, HAEMATOLOGY, SERUM BIOCHEMISTRY AND CARCASS CHARACTERISTIC OF WEANER PIGS

Authors

  • Taiwo Kayode OJEDIRAN Department of Animal Nutrition and Biotechnology, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Nigeria
  • Taiwo Mary AJEWOLE Department of Animal Nutrition and Biotechnology, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Nigeria
  • Olanrewaju TAIWO Department of Animal Nutrition and Biotechnology, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Nigeria
  • Isiak Adewale Isiak Adewale Department of Animal Nutrition and Biotechnology, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Nigeria

DOI:

https://doi.org/10.36547/sjas.790

Keywords:

ascorbic acid, blood, cost-benefit, performance, primal cuts, weaned-grower pig

Abstract

Seven weeks old weaned pigs (Yorkshire x Landrace, n = 32, mean weight = 12.32 ± 0.59 kg) were allotted to 4 treatments (diets) consisting of 8 replicates each: diet A − basal diet; diet B − basal + ascorbic acid at 1 g.kg-1 diet; diet C − basal + ascorbic acid at 2 g.kg-1 diet; and diet D − basal + ascorbic acid at 3 g.kg-1 diet. Growth performance, economic indices, haematological parameters, serum biochemistry and carcass characteristics were measured. After 49 days, the pigs on diet with ascorbic acid at 2 g.kg-1 had significantly higher daily feed intake (1.54 kg per pig) (p < 0.05). The feed cost per kg increased significantly (p < 0.05) across the diets from the control (Nigerian naira, ₦ 97.60) to basal + ascorbic acid at 3 g.kg-1diet (₦ 103.50). Significantly higher (p < 0.05) red blood cell, haemoglobin, haematocrit and mean corpuscular volume values were recorded in pigs fed ascorbic acid at 2 g.kg-1 diet, while pigs fed ascorbic acid at 3 g.kg-1 diet had the highest cholesterol, triglyceride, glucose, creatinine, urea, total protein and globulin (p < 0.05) levels. Pigs offered ascorbic acid had significantly higher bleed weight, carcass weight, belly, abdominal fat, back fat thickness and whole and empty stomach weight than those fed the control diet. It can be concluded that vitamin C supplementation (up to 3 g.kg-1) had no negative impact on the growth performance and economic indices (except the feed cost) of the pigs, while it improved the haematological parameters and carcass weight and also enhanced fat deposition.

References

Abidin, Z. & Khatoon, A. (2013). Heat stress in poultry and the beneficial effects of ascorbic acid (vitamin C) supplementation during periods of heat stress. World's Poultry Science Journal, 69(1), 135−152. https://doi.org/10.1017/S0043933913000123

Adesehinwa, A. O. K. (2007). Utilization of palm kernel cake as a replacement for maize in diet of growing pigs. Effects on performance, serum metabolites, nutrient digestibility and cost of feed conversion. Bulgarian Journal of Agricultural Science, 13(5), 593−600.

Ahmadu, S., Mohammed, A. A., Buhari, H. & Auwal, A. (2016). An overview of vitamin C as an antistress in poultry. Malaysian Journal of Veterinary Research, 7(2), 9−22.

Buzzard, B. L., Edwards-Callaway, L., Engle, T., Rozell, T. & Dritz, S. (2013). Evaluation of blood parameters as an early assessment of health status in nursery pigs. Journal of Swine Health Production, 21, 148−151.

Caprarulo, V., Hejna, M., Giromini, C., Liu, Y., Dell'Anno, M., Sotira, S., Reggi, S., Sgoifo-Rossi, C. A., Callegari, M. L. & Rossi, L. (2020). Evaluation of dietary administration of chestnut and quebracho tannins on growth, serum metabolites and fecal parameters of weaned piglets. Journal of Animal Science, 10(11), 1945. https://doi.org/10.3390/ani10111945

Carr, A. C. & Vissers, M. C. M. (2013). Synthetic or Food-Derived Vitamin C – Are They Equally Bioavailable? Nutrients, 5(11), 4284−4304. https://doi.org/10.3390/nu5114284

Ching, S., Mahan, D. C., Ottobre, J. S. & Dabrowski, K. (2001). Ascorbic Acid Synthesis in Fetal and Neonatal Pigs and in Pregnant and Postpartum Sows. Journal of Animal Nutrition, 131, 1997−2001. https://doi.org/10.1093/jn/131.7.1997

Choe, J., Kim, K. S., Kim, H. B., Park, S., Kim, J., Kim, S., Kim, B., Cho, S. H., Cho, J. Y., Park, I. H., Cho, J. H. & Song, M. (2017). Effect of protease on growth performance and carcass characteristics of growing-finishing pigs. South African Journal of Animal Science, 47(5), 697−703. https://doi.org/10.4314/sajas.v47i5.13

Chung, T. K. (2006). Vitamins and pig reproduction. International Pig Topics, 21(7), 19−21.

Dlamini, Z. C., Langa, R. L. S., Aiyegoro, O. A. & Okoh, A. I. (2017). Effects of probiotics on growth performance, blood parameters, and antibody stimulation in piglets. South African Journal of Animal Science, 47(6), 766−775.

Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11, 1−42. DOI: 10.2307/3001478.

El-Senousey, H. K, Chen, B., Wang, J. Y., Atta, A. M., Mohamed, F. R. & Nie, Q. H. (2018). In ovo injection of ascorbic acid modulates antioxidant defense system and immune gene expression in newly hatched local Chinese yellow broiler chicks. Poultry Science, 97(2), 425−429. https://doi.org/10.3382/ps/pex310

Eze, J. I., Onunkwo, J. I., Shoyinka, S. V. O., Chah, F. K., Ngene, A. A., Okolinta, N., Nwanta, J. A. & Onyenwe, I. W. (2000). Haematological profiles of pigs raised under intensive management system in South-Eastern Nigeria. Nigerian Veterinary Journal, 31(2), 115−123.

Ferronato, G. & Prandini, A. (2020). Dietary Supplementation of Inorganic, Organic, and Fatty Acids in Pig: A Review. Animals (Basel), 10(10), 1740. DOI: 10.3390/ani10101740

Hancock, R. D. & Viola, R. (2002) Biotechnological approaches for L-ascorbic acid production. Trends in Biotechnology, 20(7), 299−305. https://doi.org/10.1016/S0167-7799(02)01991-1

He, Y., Lam, T. H., Li, L. S., He, S. F. & Liang, B. Q. (2004). Triglyceride and coronary heart disease mortality in a 24- year follow-up study in Xi'am, China. Annals of Epidemiology, 14(1), 1−7. https://doi.org/10.1016/S1047-2797(03)00069-3

Kim, Y. Y., Kil, D. Y., Oh, H. K. & Han, I. K. (2005). Acidifier as an Alternative Material to Antibiotics in Animal Feed. Asian Australasian Journal of Animal Sciences, 18(7), 1048−1060. https://doi.org/10.5713/ajas.2005.1048

Kolb, E. & Seehawer, J. (2001). Stress in pigs. II. The influence of vitamins. Tierärztliche Umschau, 56(2), 90−96.

Lauridsen, C. & Jensen, S. K. (2005). Influence of supplementation of all-rac-α-tocopheryl acetate preweaning and vitamin C postweaning on α-tocopherol and immune responses of piglets. Journal of Animal Science, 83, 1274−1286.

Lechowski, J., Kasprzyk, A., Tyra, M. & Trawińska, B. (2015). Effect of ascorbic acid as a feed additive on indicators of the reproductive performance of Pulawska breed gilts. Medycyna Weterynaryjna, 72(6), 378−382. https://doi.org/10.21521/mw.5518

Levine, M., Rumsey, S., Wang, Y., Park, J., Kwon, O., Xu, W. & Amano, N. (1996): Vitamin C. In: Ziegler, E. E., Filer, L. J. Jr. (ed.), Present Knowledge in Nutrition. ILSI Press, International Life Sciences Institute, Washington, D.C., 146−159.

Mroz, Z. (2005). Organic Acids as Potential Alternatives to Antibiotic Growth Promoters for Pigs. Advances in Pork Production, 16, 169−182.

Navab, M., Reddy, S. T., Van Lenten, B. J. & Fogelman, A. M. (2011). HDL and cardiovascular disease. Atherogenic and atheroprotective mechanisms. Nature Review Cardiology, 8, 222. https://doi.org/10.1038/nrcardio.2010.222

Njoku, C. P., Adeyemi, O. A., Sanya, B. J., Akinola, S. O. & Oluwatosin, O. O. (2015). Physiological response of growing pigs to qualitative and quantitative feed restriction in a humid tropical environment. Malaysian Journal of Animal Science, 18(2), 125−140.

O'Shea, C. J., McAlpine, P. O., Solan, P., Curran, T., Varley, P. F., Walsh, A. M. & Doherty, J. V. O (2014). The effects of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower-finisher pigs. Animal Feed Science and Technology, 89, 88−97. https://doi. org/10.1016/j.anifeedsci.2013.11.012

Ojediran, T. K., Babatunde, E. O., Olokun, S. O., Adigun, O. K., Ajao, B. B., Emaye, F., Shittu, M. D. & Adejoro, F. A. (2021). Growth performance, blood profile, and carcass characteristics of weaned pigs fed low crude protein diets supplemented with lysine. Tropical Animal Science Journal, 44(4), 434−440. https://doi.org/10.5398/tasj.2021.44.4.434

Ojediran, T. K., Olayiwola, S., Adeyeye, M., Ajayi, A. F., & Emiola, I. A. (2020). Effects of palm kernel meal-based diet with or without enzyme supplementation on growth performance, economic benefits and villi morphometry of weaned pigs. Polish Journal of Natural Sciences, 35(2), 129−139.

Partanen, K. H. & Mroz, Z. (1999). Organic acids for performance enhancement in pig diets. Nutrition Research Review, 12, 117−145.

Peters, T., Biamote, G. T. & Doumas, B. T. (1982) Total Protein in Serum, Urine, and Cerebrospinal Fluid, Albumin, in Serum. In: Faulkner, W. R. & Meites, S., Eds., Selected Methods of Clinical Chemistry, American Association for Clinical Chemistry, Washington D.C., 125−132.

Pinelli-Saavedra, A., Calderon de la Barca, A. M., Hernandez, J., Valenzuela, R. & Scaife, J. R. (2008). Effect of supplementing sows' feed with alpha-tocopherol acetate and vitamin C on transfer of alpha-tocopherol to piglet tissues, colostrum, and milk: aspects of immune status of piglets. Research Veterinary Science, 85(1), 92−100. https://doi.org/10.1016/j.rvsc.2007.08.007

Ramanau, A., Kluge, H., Spilke, J. & Eder, K. (2004). Supplementation of sows with L-carnitin during pregnancy and lactation improves growth of the piglets. The Journal of Nutrition, 134(1), 86−92. https://doi.org/10.1093/jn/134.1.86

Rauw, M., Portoles, O., Soler, J., Reixach, J., Prat Cuffi, J. M., Diaz, I. & Gomez-Raya, L. (2004). Preliminary results on the relationship between cholesterol and triglyceride serm levels and bogy weight around weaning in pigs. Conference. XII Reunion Nacional de Majora Genetica Animal at Arucas, Las Palmas, Gran Canaria. ITEA, 100(3), 284−288.

Rebouche, C. J. (1991). Ascorbic acid and carnitine biosynthesis. The American Journal of Clinical Nutrition, 54(6 Suppl.), 1147S−1152S.

Schmidt, E. & Schmidt, F. W. (1963). Determination of serum GOT and GPT. Enzyme Biological Clinics, 3(1), 234−245.

Suiryanranyna, M. V. & Ramana, J. V. (2015). A review of effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 6(1), 1−11. https://doi.org/10.1186/s40104-015-0042-z

Thorn, C. E. (2000). Normal haematology of the pig. In: Chalm's Veterinary Haematology. Ed. B. F. Feldman, J. G. Zinkl, N. C. Jain, 5th ed., Blackwell Publishing, Narayana Press, Denmark, 1085−1095.

Unigwe, C. R., Balogun, F. A. & Odeyemi, T. A. (2018). Liver enzymes an histomorphology of pigs fed fermented and enzyme-supplemented cassava peel meal based diets. Nigerian Journal of Animal Science, 20(3), 106−116.

Vandamme, E. J. & Revuelta, J. L. (2016). Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: Industrial Fermentation of Vitamin C; pp. 161−192.

Yue, L., Hao, Z., Li, Y., Lili, Z. & Tian, W. (2015). Effect of medium-chain triglycerides on growth performance, nutrient digestibility, plasma metabolites and antioxidant capacity in weanling pigs. Journal of Animal Nutrition, 1(1), 12−18. https://doi.org/10.1016/j.aninu.2015.02.001

Zhao, J. M., Defa, L., Xiangshu, P., Zongyi, W. & Yong, C. (2002). Effect of vitamin C on stress resistance and immune function in weanling piglets. Chinese Journal of Animal Science, 38, 19−21.

Downloads

Published

2022-10-25

Issue

Section

Articles