FIBRE EFFECTS ON NUTRITION AND REPRODUCTION IN PIGS

Authors

  • Olusegun Atteh Kwara state University

DOI:

https://doi.org/10.36547/sjas.850

Keywords:

dietary fibre, pigs, performance, reproduction, blood parameters

Abstract

Dietary fibre (DF) is an indigestible carbohydrate in the form of a non-starch polysaccharide that is a major problem in the use of inexpensive agro-wastes by pigs such as brewer's dry grains, cassava peel, palm kernel cake, rice bran, sorghum spent grain and wheat offal. The DF in a pig's diet can be classified by its solubility as soluble dietary fibre and insoluble dietary fibre, and chemically − as neutral detergent fibre and acid detergent fibre. High DF levels reduced nutrient utilization, growth rate, in terms of pork production and reproductive performance. Pigs' reproductive cycles at different stages and lactation were both greatly impacted by increased DF intake. High DF decreased the number of stillborn piglets at birth and the farrowing duration by sow, while improving colostrum intake in piglets and colostrum yield in sows.

On the other hand, reducing the quantity of DF's hemicellulose in a sow's lactation diet can improve the low-birth-weight piglets' health, post-weaning performance and milk composition. While exogenous enzymes and the extrusion of fibrous feedstuffs enhanced nutrient digestibility and utilisation, other processing methods, including fermentation and extrusion, decreased the DF components and had a beneficial impact on the performance of the pigs. Agro-industrial residues have enormous potential to improve reproductive efficiency and serving as an economically viable DF feeding strategy in the pig industry.

References

Adebiyi, O. A., Sodeke, M., Adeleye, O. O. & Adejumo, I. O. (2018). Effects of extruded rice bran-based diets on the performance, intestinal microbiota and morphology of weaned pigs. Agricultura Tropica et Subtropica, 51(1), 13−19.

Adesehinwa, A. O. K., Fanimo, A. O., Ogunsanmi, A., Uma, M. & Ogunmodede, B. K. (1999). Weaner pigs fed. graded levels of maize offal as replacement for maize. 2. Effect on serum metabolites. Tropical Journal Animal Science, 1(2), 35−43.

Adesehinwa, A. O. K. (2007). Utilization of palm kernel cake as a replacement for maize in diets of growing pigs: effects on performance, serum metabolites, nutrient digestibility and cost of feed conversion. Bulgarian Journal of Agricultural Science, 13, 593−600.

Adesehinwa, A. O. K. (2008a). Energy and protein requirements of pigs and the utilization of fibrous feedstuffs in Nigeria. African Journal of Biotechnology, 7(25), 4798−4806.

Adesehinwa, A. O. K., Dairo, F. A. S. & Olagbegi, B. S. (2008b). Response of growing pigs to cassava peel-based diets supplemented with Avizyme® 1300: growth, serum and hematological indices. Bulgaria Journal of Agricultural Science, 14, 491−499.

Adesehinwa, A. O. K., Obi, O. O., Makanjuola, B. A., Oluwole, O. O. & Adesina, M. A. (2011). Growing pigs fed cassava peel based diet supplemented with or without Farmazyme 3000 proenx: Effect on growth, carcass and blood parameters. African Journal of Biotechnology, 10(14), 2791−2796.

Adesehinwa, A. O. K., Samireddypalle, A., Fatufe, A. A., Ajayi, E., Boladuro, B. & Okike, I. (2016). High quality cassava peel fine mash as energy source for growing pigs: effects on performance, cost of production and blood parameters. Livestock Research for Rural Development, 28, 11, Art.No. 207.

Adesehinwa, A. O. K., Fatufe, A. A., Samireddypalle, A., Ajayi, E., Adetunji, T. A., Okike, I. & Adesehinwa, O. (2017). Utilization of high quality cassava peel (HQCP®) mash as an alternative source of energy in weaned pigs diet. Proceeding of the American Society of Animal Science Conference, July 8−12, 2017, Baltimore Convention Center, Maryland, USA.

Akinfala, E. O., Ogundeji, S. T. & Adewole, E. F. (2017). Growth response, carcass traits and cholesterol of growing-finishing pigs fed different fibre feedstuffs-based diets. Nigerian Journal of Animal Science, 2, 114−122.

Akovbovbo, G., Ajuogu, P. K. & Yahaya, M. A. (2014). Haematological response of weaners pigs fed with graded levels of water hyacinths (Eichornia crassipes) as feed supplement. International Journal Advanced Biological Research, 4(2), 165−167.

Aladi, N. O. (2016). Studies on dietary fermented mixture of cassava and palm kernel cake on carcass characteristics of broilers and pigs. Ph.D. Thesis, Federal University of Technology, Owerri, Nigeria.

Alikwe, P. C. N., Lamidi, A. A. & Aina, A. B. J. (2012). Comparative digestibility and nitrogen balance of maize bran, wheat offal and rice bran in West African dwarf goats. Journal of Agriculture and Social Research, 12(1), 108−113.

Amaefule, K. U., Okechukwu, S. O., Ukachukwu, S. N., Okoye, F. C. & Onwudike, O. C. (2006). Digestibility and nutrient utilization of pigs fed graded levels of brewers' dried grain-based diets. Livestock Research for Rural Development, 18(1), Art.No. 5.

Apata, D. F. & Atteh, O. M. (2016). Growth performance and intestinal morphology of broiler chickens fed diets containing almond fruit fermented with Aspergillus niger. Wayamba Journal of Animal Science, 1436−1444.

Asp, N. G., Johansson, C. G., Hallmer, H. & Siljestrom, M. (1983). Rapid enzymatic assay of insoluble and soluble dietary fibre. Journal of Agricultural Chemistry, 31, 476−482.

Bach Knudsen, K. E. (2001). The nutritional significance of "dietary fibre" analysis. Animal Feed Hermes, Science and Technology, 90(1), 3−20.

Becker, P. M., Wikselaar, P. G. & Jansman, A. J. (2009). Pea dietary fibre for adhesion an excretion of enterotoxigenic E. coli K88 to prevent intestinal colonization. Journal of Animal Science, 87, 172−189.

Berrocoso, J. D., Menoyo, D., Guzmán, P., Saldaña, B. & Cámara, L. & Mateos, G. G. (2015). Effects of fiber inclusion on growth performance and nutrient digestibility of piglets reared under optimal or poor hygienic conditions. Journal of Animal Science, 93(8), 3919−3931.

Bertram, H. C., Malmendal, A., Nielsen, N. C., Straadt, I. K., Larsen, T., Knudsen, K. E. & Laerke, H. N. (2009). NMR-based metabolomics reveals that plasma betaine increases upon intake of high-fiber rye buns in hyper-cholesterolemic pigs. Molecular Nutrition & Food Research, 53(8), 1055−1062.

Bikker, P., Dirkzwager, A., Fledderus, J., Trevisi, P., Le Huerou-Luron, I., Lalles, J. P. & Awati, A. (2006) The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. Journal of Animal Science, 84, 3337−3345.

Bindelle, J., Leterme, P. & Buldgen, A. (2008). Nutritional and environmental consequences of dietary fibre in pig nutrition: A review. Biotechnolology Agronomy, Society and Environment, 12, 69−80.

Che, L., Feng, D., Wu, D., Fang, Z., Lin, Y. & Yan, T. (2011). Effect of dietary fibre on reproductive performance of sows during the first two parities. Reproduction in Domestic Animals, 46, 1061−1066. DOI:10.1111/j.1439-0531.2011.01787.x

Chen, H., Mao, X., He, J., Yu, B., Huang, Z., Yu, J., Zheng, P. & Chen, D. (2013). Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. British Journal of Nutrition, 110, 1837−1848.

Cheng, C., Wei, H., Xu, C., Xie, X., Jiang, S. & Peng, J. (2018). Maternal soluble fiber diet during pregnancy changes the intestinal microbiota, improves growth performance, and reduces intestinal permeability in piglets. Applied and Environmental Microbiolobiology, 84(17), e01047−18.

Cummings, J. H. & Stephen, A. M. (2007). Carbohydrate terminology and Classification. European Journal of Clinical Nutrition, 61(1), S5−S18.

Dalolio, F. S., Moreira, J., Vaz, D. P., Albino, L. F. T., Valadares, L. R., Pires, A. V. & Pinheiro, S. R. F. (2016). Exogenous enzymes in diets for broilers. Revista Brasileira de Saúde e Produção Animal, 17, 149−161.

Darroch, C. S., Dove, C. R., Maxwell, C. V., Johnson, Z. B. & Southern, L. L. S. (2008). Regional research committee on nutrition and management of swine for increased reproduction efficiency. A regional evaluation of the effect of fiber type in gestation diets on sow reproductive performance. Journal of Animal Science, 86, 1573−1578.

Dayal, A. D., Diarra, S. S., Devi, S. L. A & Amosa, F. (2018). High cassava peel meal-based diets with animal fat and enzyme for broilers. Livestock Research for Rural Development, 30(6).

Dégen, L., Halas, V. & Babinszky, L. (2007) Effect of dietary fibre on protein and fat digestibility and its conse-quences on diet formulation for growing and fattening pigs: A review. Acta Agriculturae Scandinavica, Section A − Animal Science, 57(1), 1−9.

Dhingra, D., Michael, M. & Rajput, H. (2011). Dietary fibre in foods: A review. Journal of Food Science and Technology, 49, 255−266.

Dunmire, K. M., Thomas, L. L., Braun, M. B., Truelock, C. N., Tokach, M. D., DeRouchey, J. M., Goodband, R. D., Woodworth, J. C., Dritz, S. S. & Paulk, C. B. (2018). Effect of dietary fiber source on growth performance, carcass characteristics, and economic return of finishing pigs. Kansas Agricultural Experiment Station Research Reports, 4(9). DOI: 10.4148/2378-5977.7680

Edwards, L., Plush, K. J., Ralph, C. R., Morrison, R. S., Acharya, R. Y. & Doyle, R. E. (2019). Enrichment with Lucerne Hay Improves Sow Maternal Behaviour and Improves Piglet Survival. Animals, 9(8), 558.

Ekenyem, B. U. & Madubuike, F. N. (2007). Haematology and serum biochemistry of grower pigs fed varying levels of Ipomoea asarifolia leaf meal. Pakistan Journal of Nutrition, 6(6), 603−606.

Ekpo, J. S. (2015). Comparative evaluation of yam peel meal and pumpkin stem waste on the performance and carcass characteristics of growing pigs. Russian Agricultural Sciences, 41, (4), 297−299.

Fasuyi, A. O., Ibitayo, F. J. & Alo, S. O. (2013). Histopathology, haematology and serum chemistry of growing pigs fed varying levels of wild sunflower (Tithonia diversifolia) leaf meal as protein supplements. IOSR Journal of Agriculture and Veterinary Science, 4(1), 41−50.

Ferguson, E. M., Slevin, J., Hunter, M. G., Edwards, S. A. & Ashworth, C. J. (2007). Beneficial effects of a high fibre diet on oocyte maturity and embryo survival in gilts. Reproduction, 133(2), 433−439. DOI: 10.1530/REP-06-0018

Feyera, T., Hojgaard, C. K., Vinther, J., Bruun, T. S. & Theil, P. K. (2017). Dietary supplement rich in fiber fed to late gestating sows during transition reduces rate of stillborn piglets. Journal of Animal Science, 95(12), 5430−5438. DOI: 10.2527/jas2017.2110

Frank, G. R., Aherne, F. X. & Jensen, A. H. (1983). A study of the relationship between performance and dietary component digestibilities by swine fed different levels of dietary fiber. Journal of Animal Science, 57, 645−654.

Gartner, L. P. & Hiatt, J. L. (2014). Color Atlas and Text of Histology. (6th ed.). Baltimore: Lippincott Williams & Wilkins. ISBN 978-1-4511-1343-3.

Gerritsen, R., van der Aar, P. & Molist, F. (2012). Insoluble nonstarch polysaccharides in diets for weaned piglets. Journal of Animal Science, 90, 318−320.

Grela, E. R., Czech, A., Kiesz, M., Wlazło, Ł. & Nowakowicz-Debek, B. (2019). A fermented rapeseed meal additive:

effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Animal Nutrition, 5, 373−379.

Gu, X., Chen, J., Li, H., Song, Z., Chang, L., He, X. & Fan, Z. (2021). Isomaltooligosaccharide and Bacillus regulate the duration of farrowing and weaning-estrous interval in sows during the perinatal period by changing the gut microbiota of sows. Animal Nutrition, 7(1), 72−83.

Hedemann, M. S., Eskildsen, M., Lærke, H. N., Pedersen, C., Lindberg, J. E., Laurinen, P. & Bach Knudsen, K. E. (2006). Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentra-tions and fiber properties. Journal of Animal Science, 84(6), 1375−1386.

Hino, S., Takemura, N., Sonoyama, K., Morita, A., Kawagishi, H., Aoe, S. & Morita, T. (2012). Small intestinal goblet cell proliferation induced by ingestion of soluble and insoluble dietary fiber is characterized by an increase in sialylated mucins in rats. Journal of Nutrition, 142(8), 1429−1436.

Holt, J. P., Johnston, L. J., Baidoo, S. K. & Shurson, G. C. (2006). Effects of a highfiber diet and frequent feeding on behavior, reproductive performance, and nutrientdigestibility in gestating sows. Journal of Animal Science, 84, 946−9455.

Hong, T. T. T., An, L. V., Be, P. T. & Lindberg, J. E. (2016). Effect of fermented rice bran and cassava waste on growth performance and meat quality of crossbred pigs. World Journal of Agricultural Research, 4(5), 132−138.

Huang, B., Wang, L., Lyu, Z., Wang, L., Zang, J., Li, D. & Lai, C. (2021). Evaluation on net energy of defatted rice bran from different origins and processing technologies fed to growing pigs. Animals, 11(4), 1106.

Igene., F. U. (2006). Essentials of Pigs Production in Nigeria J.L.G Publishers, Ibadan, 1st Edition.

Imonikebe, U. G. & Kperegbeyi, J. I. (2014). Effect of substitution of maize with brewer's dried grain in pig starter diet on the performance of weaner pig. Global Journal of Agricultural Research, 2(4), 42−48.

Irekhore, O. T., Adeyemi, O. M., Idowu, O. M. O., Akinola, O. S. & Bello, K. O. (2015). Growth performance, haematological indices and cost benefits of growing pigs fed cassava peel meal diets supplemented with Allzyme® SSF. International Journal of Applied Agricultural Research, 11, (1&2), 51−59.

Iyayi, E. A. (2001). Cassava leaves as supplements for feeding weaner swine. Tropical Animal Production Investment, 4, 141−150.

Jaworski, N. W. & Stein, H. H. (2017). Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls. Journal of Animal Science, 95(2), 727−739.

Jaworski, N. W., Lærke, H. N., Bach Knudsen, K. E. & Stein, H. H. (2015). Carbohydrate composition and in vitro digestibility of dry matter and non-starch poly-saccharides in corn, sorghum, and wheat and co-products from these grains. Journal of Animal Science, 93, 1103−1113.

Jha, R. & Berrocoso, J. D. (2015). Review: dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal, 9, 1441−1452.

Johnston, L. J., Noll, S., Renteria, A. & Shurson, J. (2003). Feeding by-products high in concentration of fiber to nonruminants. In: National Symposium on Alternative Feeds for Livestock and Poultry. Kansas City, MO, 169−186.

Kanengoni, A. T., Dzama, K., Chimonyo, M., Kusina, J. & Maswaure, S. M. (2004). Growth performance and carcass traits of Large White, Mukota and Large White × Mukota F1 crosses given graded levels of maize cob meal. Animal Science, 78, 61−66.

Kass, M. L., Van Soest, P. J., Pond, W. G, Lewis, B. & McDowell, R. E. (1980). Utilization of dietary fiber from alfalfa by growing swine. I. Apparent digestibility of diet component in specific segments of the gastrointestinal tract. Journal of Animal Science, 50, 175−191. DOI: 10.2527/jas1980.501175

Kehinde, A. S., Babatunde, T. O., Kehinde, J. O., Babatunde, O. O., Adelakun, K. M. Fadimu, B. O., Abdulazeez, F. I. & Ogundimu, A. O. (2020). Fibre characterization of cassava peel leaf meal and its utilization by broilers. Journal of Applied Science and Environmental Management, 24(9), 1529−1533.

Kerr, B. J. & Shurson, G. C. (2013). Strategies to improve fiber utilization in swine. Journal of Animal Science and Biotechnology, 4(1), 11.

Kohn, R. A., Dinneen, M. M. & Russek-Cohen, E. (2005). Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. Journal of Animal Science, 83, 879−889.

Kil, D. Y., Kim, B. G. & Stein, H. H. (2013). Feed energy evaluation for growing pigs. Asian-Australis Journal of Animal Sciences, 26(9), 1205−1217.

Kim, S. W., Weaver, A. C., Bin Shen, Y. & Zhao, Y. (2013). Improving efficiency of sow productivity: Nutrition and health. Journal of Animal Science Biotechnology, 4(1), 26.

Knudsen, K. E. B. (2001). The nutritional significance of "dietary fibre" analysis. Animal Feed Science and Technology, 90, 3−20.

Le Golf, G. & Noblet, J. (2001). Comparative digestibility of dietary energy and nutrients in growing pigs and adult sows. Journal of Animal Science, 79, 2418−2427.

Le, M. H. A., Galle, S., Yang, Y., Landero, J. L., Beltranena, E., Ganzle, M. G. & Zijlstra, R. T. (2016). Effects of feeding fermented wheat with Lactobacillus reuteri on gut morphology, intestinal fermentation, nutrient digestibility, and growth performance in weaned pigs. Journal of Animal Science, 94(11), 4677−4687.

Li, H., Liu, Z., Lyu, H., Xueling, G., Song, Z., He., X., & Fan, Z. (2020). Effects of dietary inulin during late gestation on sow physiology, farrowing duration and piglet performance. Animal Reproduction Science, 106531.

Loisel, F., Farmer, C., Ramaekers, P. & Quesnel, H. (2013). Effects of high fiber intake during late pregnancy on sow physiology, colostrum production, and piglet performance. Journal of Animal Science, 91, 5269−5279. DOI: 10.2527/jas.2013-6526

Luo, Z., Zhao, Y., Zeng, L., Yin, J., Zeng, Q., Li, X., He, J., Wang, J. & Tan, B. (2021). Effects of fermented radix

puerariae residue on nutrient digestibility and reproductive performance of sows. Frontier Nutrition, 8, 715713. DOI: 10.3389/fnut.2021.715713

Lv, Z., Zhang, Z., Wang, F., Guo, J., Zhao, X. & Zhao, J. (2022). Effects of dietary fiber type on growth performance, serum parameters and fecal microbiota composition in weaned and growing-finishing pigs. Animals, 12(12), 1579.

Makinde, O. A. & Sonaiya, E. B. (2011). Utilization of sun-dried maize offal with blood meal in diets for broiler chickens. Open Journal of Animal Science, 1(3), 106−111.

Marini, A. M., Ayub, M. Y., Abd. Salam, B. Hadijah, H., Azahan, E. A. E. & Tarmizi, S. A. (2008). Protein quality of Aspergillus niger-fermented palm kernel cake. Journal of Tropical Agriculture and Food Science, 36(2), 227−237.

Martins, J. S., Genova, J. L., Leal, I. F., Barbosa, K. A., Santos, L. B., Rupolo, P. B., Reis, L. E., Escocard de Oliveira, N. T., Carvalho, P. O. & Bruno, L. D. G. (2021). Potential impacts of guava seed meal on piglet feeding as a dietary fibre alternative. Journal of Applied Animal Research, 49(1), 330−339.

Mashatise, E., Hamudikuwanda, H., Dzama, K., Chimonyo, M. & Kanengoni, A. (2005). Effects of corn cob-based diets on the levels of nutritionally related blood, metabolites and onset of puberty in Mukota and Landrace×Mukota gilts. Asian-Australasian Journal of Animal Science, 18, 1469−1474.

Maswanganye, G. M. T., Liu, B., Che, D. & Han, R. (2021). Review: Effects of dietary fiber levels and composition on the intestinal health of finishing pigs. Open Journal of Animal Sciences, 11, 384−398.

McCleary, B. V., De Vries, J. W., Rader, J. I., Cohen, G., Prosky, L., Mugford, D. C., Champ, M. & Okuma, K. (2010). Determination of total dietary fiber (CODEX definition) by enzymatic−gravimetric method and liquid chromatography: Collaborative study. Journal of the Association of Official Analytical Chemists International, 93(1), 221−233.

Mertens, D. R. (2003). Challenges in measuring insoluble dietary fiber. Journal of Animal Science, 81(12), 3233−3249.

Meunier-Salaün, M. C., Edwards, S. A. & Robert, S. (2001). Effect of dietary fibre on the behaviour and health of the restricted fed sow. Animal Feed Science and Technology, 90, 53−69.

Montagne, L., Pluske, J. R. & Hampson, D. J. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108, 95−117.

Mpendulo, C. T., Chimonyo, M., Ndou, S. P. & Bakare, A. G. (2018). Fiber source and inclusion level affects characteristics of excreta from growing pigs. Asian-Australian Journal of Animal Science, 31, 755−762.

Nkwocha, G. A., Anukam, K. U. & Nkwocha, V. I. (2008). Performance, carcass and haematological characteristics of pigs fed graded levels of Gmelina arborea leaf meal. Animal Production Research Advances, 4(2), 148−151.

Nwakpu, P. E., Uchewa, E. N. & Nweke, F. N. (2010). Growth performance and hematological traits of weaner pigs fed graded levels of raw bambara nut (Vigna subterranean (L) Verdc) waste. Nigerian Journal of Biotechnology, 21, 65−70.

Oboh, S. O., Moseri, H. & Okosun, S. E. (2018). Assessment of cassava peels and palm kernel cake (pkc) on the performance of grower pig. International Journal of Research in Agriculture and Forestry, 5(10), 1−5.

Obua, B. E. (2013). Haematological and biochemical profile of weaner pigs fed Microdesmis puberula (Hook f.) leaf meal based diets. Animal Production Research Advances, 9(1), 19−25.

Ogunbode, A. A., Okeniyi, G., Fatola, O. S. G, Ogunjimi, B. A. & Folarin, M. O. (2016). Haematology and serum indices of weaner pigs fed raw pride of barbados. (Caesalpina pulcherrima) seed meal. Nigerian Journal of Animal Science, 2, 408−416.

Oguntimein, G. B. (1992). Processing cassava for animal feed. In Cassava as Livestock Feed in Africa. Workshop on the Potential Utilization of Cassava as Livestock Feed in Africa, November 14th−18th, 1988, Idaban, Nigeria.

Olayemi, W. A., Alade, A. A., Williams, G. A. & Obadae, O. O. (2006). Blood profiles, intestinal morphormetric and ceaca micro flora of broiler chickens fed with urea molasses treated maize cob. Journal of Agricultural Science and Food Technology, 6(5), 78−86.

Oliviero, C., Junnikkala, S. & Peltoniemi, O. (2019). The challenge of large litters on the immune system of the sow and the piglets. Reproduction in Domestic Animals, 54, 12−21.

Olukayode, A., Makinde, E. & Sonaiya, B. (2011) Utilization of sun-dried maize offal with blood meal in diets for broiler chickens. Open Journal of Animal Science, 1(3), 106−111.

Paßlack, N., Vahjen, W. & Zentek, J. (2015). Dietary inulin affects the intestinal microbiota in sows and their suckling piglets. BMC Veterinary Research, 11, 51.

Papatsiros, V. G., Katsarou, M. S., Drakoulis, N., Maragkakis, G., Tzika, E., Maes, D., Tassis, P. D., Lagiou, M. & Christodoulopoulos, G. (2021). Effects of dietary fibre on metabolism and performance in sows. Polish Journal of Veterinary Sciences, 24(2), 271−279.

Ramonet, Y., Meunier-Salaun, M. C. & Dourmad, J. Y. (1999). High-fiber diets in pregnant sows: digestive utilization and effects on the behavior of the animals. Journal of Animal Science, 77, 591−599.

Régnier, C., Bocage, B., Archimède, H. & Renaudeau, D. (2010). Effects of processing methods on the digestibility and palatability of cassava root in growing pigs. Animal Feed Science and Technology, 162, 135−143.

Rose, D. J., Patterson, J. A. & Hamaker, B. R. (2010). Structural differences among alkali soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles. Journal of Agriculture and Food Chemistry, 58, 493−499.

Schulze, H., Van Leeuwen, P., Verstegen, M. W., Huisman, J., Souffrant, W. B. & Ahrens, F. (1994). Effect of level of dietary neutral detergent fiber on ileal apparent digestibility and ileal nitrogen losses in pigs. Journal of Animal Science, 72(9), 2362−2368.

Stein, H. H. & Shurson, G. C. (2009). Board-invited review: The use and application of distillers dried grains with solubles in swine diets. Journal of Animal Science, 87(4), 1292−1303.

Szyszkowska, A., Sowiński, J. & Wierzbicki, H. (2007). Changes in the chemical composition of maize cobs depending on the cultivar, effective temperature sum and farm type. Acta Scientiarum Polonorum Agricultura, 6, 13−22.

Tan, C., Ji, Y., Zhao, X., Xin, Z., Li, J., Huang, S., Cui, Z., Wen, L., Liu, C., Kim, S. W., Deng, J. & Yin, Y. (2021). Effects of dietary supplementation of nucleotides from late gestation to lactation on the performance and oxidative stress status of sows and their offspring. Animal Nutrition, 7(1), 111−118.

Tan, C., Wei, H., Ao, J., Long, G. & Peng, J. (2016). Inclusion of konjac flour in the gestation diet changes the gut microbiota, alleviates oxidative stress, and improves insulin sensitivity in sows. Applied and Environmental Microbiolobiology, 82(19), 5899−5909.

Theil, P. K., Lauridsen, C. & Quesnel, H. (2014). Neonatal piglet survival: impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal, 8, 1021−1030.

Tonukari, N. J., Oliseneku, E. E., Avwioroko, O. J., Aganbi, E., Orororo, O. C. & Anigboro, A. A. (2016). A novel pig feed formulation containing Aspergillus niger CSA35 pretreated-cassava peels and its effect on growth and selected biochemical parameters of pigs. African Journal of Biotechnology, 15(19), 776−785.

Van der Peet-Schwering, C. M. C., Kemp, B., Binnendijk, G. P., Den Hartog, L. A., Spoolder, H. A. M. & Verstegen, M. W. A. (2003). Performance of sows fed high levels of non-starch polysaccharides during gestation and lactation over three parities. Journal Animal Science, 81, 2247−2258.

Van Soest, P. J. & Wine, R. H. (1968) The determination of lignin and cellulose in acid detergent fiber with

permanganate. Journal of Association of Official Analytical Chemists, 51, 780−785.

Wafar, R. J., Tarimbuka, L. I., Sini, T., Adi, Z. A., Lamalang, E. B. & Bako, M. I. (2020). Growth performance and nutrient digestibility of weaner pigs fed cereal offals in diets. Nigerian Journal of Animal Production, 47(6), 129−134.

Weber, T. E. & Kerr, B. J. (2012). Metabolic effects of dietary sugar beet pulp or wheat bran in growing female pigs. Journal of Animal Science, 90, 523−532.

Wenk, C. (2001). The role of dietary fibre in the digestive physiology of the pig. Animal Feed Science and Technology, 90(1−2), 21−33.

Woyengo, T. A., Beltranena, E. & Zijlstra, R. T. (2014). Nonruminant nutrition symposium: Controlling feed cost by including alternative ingredients into pig diets: A review. Journal of Animal Science, 92, 1293−305.

Xu, C., Peng, J., Zhang, X. & Peng, J. (2020). Inclusion of soluble fiber in the gestation diet changes the gut microbiota, aects plasma propionate and odd-chain fatty acids levels and improves insulin sensitivity in sows. Internal Journal of Molecular Sciences, 21(2), 635.

Yang, P. & Zhao, J. (2021). Variations on gut health and energy metabolism in pigs and humans by intake of different dietary fibers. Food Science & Nutrition, 9, 4639−4654.

Yen, J. T., Nienaber, J. A., Hill, D. A. & Pond, W. G. (1991). Potential contribution of absorbed volatile fatty acids to whole-animal energy requirement in conscious swine. Journal of Animal Science, 69, 2001−2012.

Yin, G., Huang, D., Zhang, H. & Wang, J. (2016). Effect of dietary fibre on serum biochemical parameters of pregnant sows. Journal of Chemical and Pharmaceutical Research, 6, 1222−1224.

Zhang, S., Wu, Z., Heng, J., Song, H., Tian, M., Chen, F. & Guan, W. (2020). Combined yeast culture and organic selenium supplementation during late gestation and lactation improve preweaning piglet performance by enhancing the antioxidant capacity and milk content in nutrient-restricted sows. Animal Nutrition, 6(2), 160−167.

Zhang, W., Li, D., Liu, L., Zang, J., Duan, Q., Yang, W. & Zhang, L. (2013). The effects of dietary fiber level on nutrient digestibility in growing pigs. Journal of Animal Science and Biotechnology, 4(1), 17.

Zhao, J., Wang, Q., Liu, L., Chen, Y., Jin, A., Liu, G., Li, K., Li, D. & Lai, Ch. (2018). Comparative digestibility of nutrients and amino acids in high-fiber diets fed to crossbred barrows of Duroc boars crossed with Berkshire×Jiaxing and Landrace×Yorkshire. Asian-Australasian Journal of Animal Science, 31(5), 721−728.

Zhuo, Y., Feng, B., Xuan, Y., Che, L., Fang, Z., Lin, Y., Xu, S., Li, J., Feng, B. & Wu, D. (2020). Inclusion of purified dietary fiber during gestation improved the reproductive performance of sows. Journal of Animal Science and Biotechnology, 11, 47.

Zhou, Y., Jiang, Z., Lv, D. & Wang, T. (2009). Improved energy-utilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poultry Science, 88, 316−322.

Ziemer, C. J., Kerr, B. J., Weber, T. E., Arcidiacono, S., Morrison, M. & Ragauskas, A. (2012). Effects of feeding fiber-fermenting bacteria to pigs on nutrient digestion, fecal output, and plasma energy metabolites. Journal of Animal Science, 90, 4020−4027.

Downloads

Published

2024-05-24

Issue

Section

Reviews