RELATIONSHIP BETWEEN PITUITARY SPECIFIC TRANSCRIPTION FACTOR-1 (PIT-1) GENOTYPIC VARIANTS AND NON-LINEAR GROWTH CURVE PARAMETERS IN FUNAAB ALPHA CHICKENS

Authors

  • Ubong AKPAN Federal University of Agriculture, Abeokuta
  • Victor Oluwabukunmi OLOWOOKERE
  • Christian Obiora Ndubuisi IKEOBI

DOI:

https://doi.org/10.36547/sjas.930

Keywords:

genotypic variants, pit-1, growth model, pcr-rflp, funaab alpha

Abstract

This research was designed to identify genotypic variants in pituitary specific transcription factor-1 (PIT-1) gene and determine the relationship between PIT-1 genotypic variants and growth rate indices, with non-linear growth model parameters in FUNAAB Alpha chickens. Four non-linear growth models (Brody, Gompertz, Logistic and Bertalanffy) were fitted to measure the body weight of FUNAAB alpha chickens at 8 weeks of age. This analysis was conducted using the NLIN procedure of the SAS software (Version 9.2). The Akaike information criteria (AIC), Bayesian information criteria (BIC), Means Squared Error (MSE) and Root Mean Squared Error (RMSE) were used to determine the most appropriate model. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) analysis was used to identify PIT-1 genotypic variants. The results revealed a significant effect of the PIT-1 genotypic variant on the relative growth rate (RGR). BB allele had the highest value (54.00), while AA and AB alleles had values of 44.13 and 52.11, respectively. A significant effect of chicken genotype was observed on body weight (BW), absolute growth rate (AGR) and RGR (relative growth rate). The mean values obtained for normal feather growth rate indices were higher than the mean values for frizzle feather (FF) and naked neck (NK). There was a high negative correlation between mature weight (A) and maturing index (k) in all the models for genotypic variants AA, AB and BB. AIC and BIC estimates were lowest in Gompertz for FF genotype and male sex of FUNAAB alpha chickens. This study found an association between PIT-1 genotypic variants and growth curve parameters; the Gompertz model was found to be the most appropriate non-linear model for describing growth in FUNAAB alpha chickens.

 

References

Adebambo, A. O., Ikeobi, C. O. N., Ozoje, M. O., Oduguwa, O. O. & Adebambo O. A. (2011). Combining Abilities Of Growth Traits Among Pure And Crossbred Meat Type Chickens. Archivos de Zootecnia. 60, 953-963.

Adebambo, O. A., Ikeobi, C. O. N., Ozoje, M. O., Adebambo, O., Peters, S.O., Adeleke, M. A., Wheto, M. Y., Ojoawo, H. T., Osinbowale, D.A., Ogunpaimo, O., Bamidele, O., Sonaiya, E. B. & Dessie, T. (2018). Indigenous chicken breeding in Nigeria. Proceedings of the 43RD Annual conference of the Nigerian Society for Animal Production, March 18-22, 2018, pp 15–32.

Adeleke, M.A., Peters, S.O., Ozoje, M.O., Ikeobi, C.O.N., Bamgbose, A.M. & Adebambo, O.A., (2011). Growth performance of Nigerian local chickens in crosses involving an exotic broiler breeder. Tropical Animal health and production, 43, pp.643-650.

Aggrey, S. E. (2002). Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science, 81, 1782–1788. doi:10.1093/ps/ 81.12.1782.

Ai, H., Ren, J., Zhang, Z., Ma, J., Guo, Y., Yang, B. & Huang, L. (2012). Detection of quantitative trait loci for growth- and fatness-related traits in a large-scale White Duroc × Erhualian intercross pig population. Animal Genetics 43: 383-391.

Barbato, G. F. (1991). Genetic architecture of growth curve parameters in chickens. Theoretical and Applied Genetics, 83, 24–32. doi:/10.1007/BF00229222.

Bashiru, H. A., Oseni, S. O., & Omadime, L. A. (2020). Assessment of spline functions and non-linear models for estimating growth curve parameters of FUNAAB-Alpha chickens. Slovak Journal of Animal Science, 53, 19–31.

Brown, J. E., Fitzhugh, H. A., & Jr Cartwright, T. C. (1976). A comparison of non-linear models for describing weightage relationships in cattle. Journal of Animal Science, 42, 810-818. doi:/10.2527/jas1976.424810x

Cohen, L. E., Wondisford, F. E. & Radovick, S. (1996). Role of Pit-1 in the gene expression of growth hormone, prolactin and thyrotropin. Endocrinology Metabolism Clinics of North America 25:523–540.

Deeb, N. & Lamont, S.J. (2002). Genetic architecture of growth and body composition in unique chicken populations. Journal of Heredity. 93(2): 107-18.

Durosaro, S.O., Jeje, O.S., Ilori, B.M., Iyasere, O.S. & Ozoje, M.O. (2021). Application of non-linear models in description of growth of dual purpose FUNAAB Alpha chickens. Journal of Agriculture and Rural Development in the Tropics and Subtropics (JARTS), 122(2), pp.147-158.

Eleroğlu, H., Yıldırım, A., Șekeroğlu, A., Çoksöyler, F.N. & Duman, M. (2014). Comparison of growth curves by growth models in slow-growing chicken genotypes raised the organic system. International Journal of Agriculture and Biology, Vol. 16, No. 3 page 529-535.

FAO, (2019). Food and Agricultural Organization of the United Nations Rome, Pp 5

Fitzhugh, H. A. J. R. (1976). Analysis of growth curves and strategies for altering their shape. Journal of Animal Science 42: 1036-1051.

France, J. and Thornley, J. H. M. (1984). Mathematical models in Agriculture, Butterworths, London, 335 p

Gbangboche, A. B., Glele-Kakai, R., Salifou, S., Albuquerque, L. G. & Leroy, P. L. (2008). Comparison of non-linear growth models to describe the growth curve. West African Dwarf sheep. Animal 2, 1003–1012.

Ikeobi, C. O. N., Peters, S. O. & Ebozoje, M. O. (1995). Sexual dimorphism in two strains of broiler chicken. Nigerian Journal of Genetics.1995;10:16-22.

Jiang, R., Li, J., Qu, L., Li, H. & Yang, N. (2004). A new single-nucleotide polymorphism in the chicken pituitary-specific transcription factor (POU1F1) gene associated with growth rate. Animal Genetics 35:344–346.

Kaps, M. & Lamberson, W. R. (2004). Biostatistics for Animal Science. CABI Publishing International, pp. 282

Karkach AS (2006). Trajectories and models of individual growth: A review. Journal of Demographic Research. 15 (12), 347-400.

Kor, A.. Baspinar, E., Karaca, S. & Keskin, S. (2006). The determination of growth in Akkeci (white goat) female kids by various growth models. Czech Journal of Animal Science, 51(3): 110 – 116.

Lambe, N. R., Navajas, E. A., Simm, G. & Bunger, L. (2006). A genetic investigation of various growth models to describe growth of lambs of two contrasting breeds. Journal of Animal Science 84: 2642–54.

Lee, E. J., Russell, T., Hurley, L. & Jameson, J. L. (2005). Pituitary transcription factor-1 induces transient differentiation of adult hepatic stem cells into prolactin-producing cells in vivo. Molecular Endocrinology 19:964–971.

Li, S., Crenshaw, E. B., Rawson, E. J., Simmons, D. M., Swanson, L. W. & Rosenfeld, M. G. (1990). Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene Pit-1. Nature 347:528–533.

Maruyama, K., Vinyard, B., Akbar, M. K., Shafer, D. J. & Turk, C. M. (2001). Growth curve analyses in selected duck lines. British Poultry Science 42:574–582.

Mignon-Grasteau, S., Beaumont, C., Le Bihan-Duval, E., Poivey, J. P., Derochambeau, H., & Richard, F. H. (1999). Genetic parameters of growth curve parameters in male and female chickens. British Poultry Science, 40, 44–51. doi:10.1080/00071669987827

Mignon-Grasteau, S., M. Piles, L.D. Varona, H. de Rochambeau, J.P. Poivey, A. Blasco, & C. Beaumont. (2000). Genetic Analysis of Growth Curve Parameters for Male and Female Chickens Resulting from Selection on Shape of Growth Curve.” Journal of Animal Science 78:2515–2524.

Miyai, S., Yoshimura, S., Iwasaki, Y., Takekoshi, S., Lloyd, R. V. & Osamura, R. Y. (2005). Induction of GH, PRL and TSH beta mRNA by transfection of Pit-1 in a human pituitary adenomaderived cell line. Cell Tissue Research 322:269–277.

Narinc, D., Askoy, T., & Emre, K. (2010). Analysis of fitting growth models in medium growing chicken raised indoor system. Trends in Animal Veterinary Science Journal, 1(1), 12–18.

Ngeno, K., Bebe, B. O. & Kahi, A. K. (2010). Estimation of growth parameters of indigenous chicken populations intensively reared in Kenya. Eger. Journal of Science and Technology. 11:13–28.

Nie, Q., Fang, M., Xie, L., Zhou, M., Liang, Z., Luo, Z. & Zhang, X. (2008). The PIT1 gene polymorphisms were associated with chicken growth traits. BMC genetics, 9, 20.

Oleforuh-Okoleh, V. U., Kurutsi, R. F. & Ideozu, H. M. (2017). Phenotypic evaluation of growth traits in two Nigerian local chicken genotypes. Animal Research International 14(1): 2611 – 2618.

Oyeleye, R.O., Adenaike, A.S., Bello, O.K., Akinrinola, C.T., Adewuyi, T.R. & Ikeobi, C.O.N. (2023). Heritability of body weight, growth rate indices and their association with insulin-like growth factor-2 gene polymorphism in purebred Nigerian indigenous chickens and their crosses with Marshal chickens. Animal Science and Biotechnologies. 80(2): 36-43.

Raji, A. O., Alade, N. K. & Duwa, H. (2014). Estimations of model parameters of the Japanese quail growth curve using Gompertz model. Archivos Zootechnia 63 (4):29-35.

Rao, D. K. R. (2020). Introduction to poultry farming. Poultry farming https://www.academia.edu/43806750/

Rizzi, C., Contiero, B., & Cassandro, M. (2013). Growth patterns of Italian local chicken populations. Poultry Science, 92, 2226-2235. doi:10.3382/ps.2012-02825

Selvaggi, M., Laudadio,V., Dario, C., & Tufarelli, V. (2015). Modelling Growth Curves in a Nondescript Italian Chicken Breed: an Opportunity to Improve Genetic and Feeding Strategies. Journal of Poultry Science, 52, 288- 294. doi:10.2141/jpsa.0150048

Song, C., Gao, B., Teng, Y., Wang, X., Wang, Z., Li, Q., Mi, H., Jing, R. & Mao, J. MspI polymorphisms in the 3rd intron of the swine POU1F1 gene and their associations with growth performance. Journal of Applied Genetics 2005;46:285–289.

Statistical Analysis Software (SAS) (2004) Version 9.2. SAS Institute Inc., Cary.

Xue, K., Chen, H., Wang, S., Cai, X., Liu, B., Zhang, C. F., Lei, C. Z., Wang, X. Z., Wang, Y. M. & Niu, H. (2006). Effect of genetic variations of the POU1F1 gene on growth traits of Nanyang cattle. Yi Chuan Xue Bao, 33: 901-907.

Yakupoglu, C. & Atil, H. (2001). Comparison of growth curve models on broilers growth curve I: Parameters estimation. Online Journal of Biological Sciences, 1, 680 – 681.

Yalçin, S., Testik, A., Ozkan, S., Settar, P., Celen, F. & Cahaner, A. (1997). Performance of naked neck and normal broilers in hot, warm, and temperate climates. Poultry Science. 76: 930–937.

Yoo, C. K., Park, H. B., Lee, J. B., Jung, E. J., Kim, B. M., Kim, H. I., Ahn, S. J., Ko, M. S., Cho, I. C. & Lim, H. T. (2014). QTL analysis of body weight and carcass body length traits in an F2 intercross between Landrace and Korean native pigs. Animal Genetics 4: 589-592.

Zhao, Q., Davis, M. E. & Hines, H. C. (2004). Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle. Journal of Animal Science, 82: 2229-2233

Downloads

Published

2024-12-13

Issue

Section

Articles