Optimization of Broiler Turkey Health and Performance using Functional Feed Additives

Functional Feed Additives

Authors

DOI:

https://doi.org/10.36547/sjas.975

Keywords:

Animal health

Abstract

Abstract

This study investigated the impact of functional feed additives (dietary supplementation with probiotics (Lactobacillus acidophilus and Bacillus subtilis) and prebiotics (mannose oligosaccharide and inulin)) on the growth performance, carcass characteristics, immune response, gut morphology, and microbiota in broiler turkeys. A total of 135 broiler turkeys were randomly assigned to three groups: a control group (G1) with no supplementation, a probiotic-supplemented group (G2), and a prebiotic-supplemented group (G3). The birds were fed these diets for 70 days. Results showed that probiotics (G2) is significantly higher and improved body weight gain, feed intake, and white blood cell count (p < 0.05), while prebiotics enhanced gut morphology and nutrient absorption. Both treatments resulted in a nonsignificantly higher villus height with significant implication in Lactobacillus spp. counts, contributing to improved gut health. No significant differences were observed in feed conversion ratio, carcass yield, or E. coli counts. The findings suggest that dietary supplementation with probiotics and prebiotics positively affects turkey growth performance, immune function, and gut health, with probiotics showing the most pronounced impact on body weight gain and immune response. The inclusion of these functional additives enhances turkey production efficiency without compromising carcass quality. Thus, probiotics and prebiotics supplementation can be a valuable strategy to optimize broiler turkey performance and health.

Keywords: broiler turkey; probiotics; prebiotics; gut health; immune response.

Author Biographies

Nuhu Bello Rano, Department of Animal Science, Faculty of Agriculture, Bayero University Kano

Department of Animal Science, Faculty of Agriculture, Bayero University Kano

Professor

Halima A. Muhammad, Department of Animal Science, Faculty of Agriculture, Bayero University Kano

Department of Animal Science, Faculty of Agriculture, Bayero University Kano

PhD.

Husaini Isma'il Abdullahi, Department of Animal Health and Production, Binyaminu Usman Polytechnic Hadejia, Jigawa, Nigeria

Department of Animal Health and Production, Binyaminu Usman Polytechnic Hadejia, Jigawa, Nigeria

Senoir Lecturer

Ali Abdul'aziz, Department of Animal Health and Production, Binyaminu Usman Polytechnic Hadejia, Jigawa, Nigeria

Department of Animal Health and Production, Binyaminu Usman Polytechnic Hadejia, Jigawa, Nigeria

Lecturer

References

Abdelqader, A., Abuajamieh, M., Hayajneh, F. & Al-Fataftah, A.-R. (2020). Probiotic bacteria maintain normal growth mechanisms of heat stressed broiler chickens. Journal of Thermal Biology, 92, 102654. https://doi.org/10.1016/j.jtherbio.2020.102654

Afsharmanesh, M. & Sadaghi, B. (2014). Effects of dietary alternatives (probiotic, green tea powder, and Kombucha tea) as antimicrobial growth promoters on growth, ileal nutrient digestibility, blood parameters, and immune response of broiler chickens. Comparative Clinical Pathology, 23, 717−724. https://doi.org/10.1007/s00580-0131676-x

AOAC International. (N.d.). Official Methods of Analysis. AOAC International. (n.d.). Retrieved from https://www.aoac.org/

Asgari, F., Madjd, Z., Falak, R., Bahar, M. A., Nasrabadi, M. H., Raiani, M. & Shekarabi, M. (2016). Probiotic feeding affects T cell populations in blood and lymphoid organs in chickens. Beneficial Microbes, 7(5), 669−676. https://doi.org/10.3920/BM2016.0014

Ashraf, R. & Shah, N. P. (2014). Immune system stimulation by probiotic microorganisms. Critical Reviews in Food Science and Nutrition, 54(7), 938−956.

Bai, S., Wu, A., Ding, X., Lei, Y., Bai, J., Zhang, K. & Chio, J. (2013). Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poultry Science, 92(3), 663−670.

Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C. & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61(2), 160−174.

Blajman, J., Gaziano, C., Zbrun, M. V., Soto, L., Astesana, D., Berisvil, A., Scharpen, A. R., Signorini, M. & Frizzo, L. (2015). In vitro and in vivo screening of native lactic acid bacteria toward their selection as a probiotic in broiler chickens. Research in Veterinary Science, 101, 50−56. https://doi.org/10.1016/j.rvsc.2015.05.017

Callaway, T., Edrington, T., Anderson, R., Harvey, R., Genovese, K., Kennedy, C., Venn, D. & Nisbet, D. (2008). Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Animal Health Research Reviews, 9(2), 217−225.

Cauble, R. N., Greene, E. S., Orlowski, S., Walk, C., Bedford, M., Apple, J., Kidd, M. T. & Dridi, S. (2020). Research Note: Dietary phytase reduces broiler woody breast severity via potential modulation of breast muscle fatty acid profiles. Poultry Science, 99(8), 4009−4015. https://doi.org/10.1016/j.psj.2020.05.005

Cloft, S. E., Robison, C. I. & Karcher, D. M. (2018). Calcium and phosphorus loss from laying hen bones autoclaved for tissue removal. Poultry Science, 97(9), 3295−3297. https://doi.org/10.3382/ps/pey201

Czech, A., Merska-Kazanowska, M., Ognik, K. & Zięba, G. (2020). Effect of the Use of Yarrowia lipolytica or Saccharomyces cerevisiae Yeast with a Probiotic in the Diet of Turkey Hens on Growth Performance and Gut Histology. Annals of Animal Science, 20(3), 1047−1063. https://doi.org/10.2478/aoas-2020-0017

Dittoe, D. K., Atchley, J. A., Feye, K. M., Lee, J. A., Knueven, C. J. & Ricke, S. C. (2019). The Efficacy of Sodium Bisulfate Salt (SBS) Alone and Combined with Peracetic Acid (PAA) as an Antimicrobial on Whole Chicken Drumsticks Artificially Inoculated with Salmonella Enteritidis. Frontiers in Veterinary Science, 6, 6. https://doi.org/10.3389/fvets.2019.00006

Dittoe, D. K., Ricke, S. C. & Kiess, A. S. (2018). Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Frontiers in Veterinary Science, 5, 216.

Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C. & Panwar, H. (2017). Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Frontiers in Microbiology, 8, 1490. https://doi.org/10.3389/fmicb.2017.01490

Erdoğmuş, S. Z., Gülmez, N., Findik, A., Şah, H. & Gülmez, M. (2018). Probiyotiklerin Eimeria tenella İle Enfekte Broiler Piliçlerin Sağlık Durumu ve Verim Performansı Üzerine Etkileri. Kafkas Universitesi Veteriner Fakultesi Dergisi. https://doi.org/10.9775/kvfd.2018.20889

Feye, K. M., Anderson, K. L., Scott, M. F., McIntyre, D. R. & Carlson, S. A. (2016). Inhibition of the virulence, antibiotic resistance, and fecal shedding of multiple antibiotic-resistant Salmonella Typhimurium in broilers fed Original XPCTM. Poultry Science, 95(12), 2902−2910. https://doi.org/10.3382/ps/pew254

Gernat, A. A., Santos, F. B. O. & Grimes, J. L. (2021). Alternative approaches to antimicrobial use in the turkey industry: Challenges and perspectives. German Journal of Veterinary Research, 1(3), 37−47. https://doi.org/10.51585/gjvr.2021.3.0018

Gulmez, N., Bingol, S., Deprem, T., Koral Tasci, S. & Gulmez, M. (2019). The Effect of Dietary Inclusion of Probiotics on Growth and Intestinal Morphology of Broiler Chickens. Journal of World's Poultry Research, 9(1), 24−31. https://doi.org/10.36380/jwpr.2019.3

Hafez, H. M. & Shehata, A. A. (2021). Turkey production and health: Current challenges. German Journal of Veterinary Research, 1(1), 3−14. https://doi.org/10.51585/gjvr.2021.0002

Halder, N., Sunder, J., De, A. K., Bhattacharya, D. & Joardar, S. N. (2024). Probiotics in poultry: A comprehensive review. The Journal of Basic and Applied Zoology, 85(1), 23. https://doi.org/10.1186/s41936-024-00379-5

Hume, M. E. (2011). Historic perspective: Prebiotics, probiotics, and other alternatives to antibiotics. Poultry Science, 90(11), 2663−2669. https://doi.org/10.3382/ps.2010-01030

Khan, S. H., Rehman, A., Sardar, R. & Khawaja, T. (2013). The effect of probiotic supplementation on the growth performance, blood biochemistry and immune response of reciprocal F1 crossbred (Rhode Island Red×Fayoumi) cockerels. Journal of Applied Animal Research, 41(4), 417−426. https://doi.org/10.1080/09712119.2013.792732

Khomayezi, R. & Adewole, D. (2022). Probiotics, prebiotics, and synbiotics: An overview of their delivery routes and effects on growth and health of broiler chickens. World's Poultry Science Journal, 78(1), 57−81. https://doi.org/10.1080/00439339.2022.1988804

Lambo, M. T., Chang, X. & Liu, D. (2021). The recent trend in the use of multistrain probiotics in livestock production: An overview. Animals, 11(10), 2805.

Latha, S., Vinothini, G., John Dickson Calvin, D. & Dhanasekaran, D. (2016). In vitro probiotic profile-based selection of indigenous actinobacterial probiont Streptomyces sp. JD9 for enhanced broiler production. Journal of Bioscience and Bioengineering, 121(1), 124−131. https://doi.org/10.1016/j.jbiosc.2015.04.019

Li, H., Zhang, L., Chen, L., Zhu, Q., Wang, W. & Qiao, J. (2016). Lactobacillus acidophilus alleviates the inflammatory response to enterotoxigenic Escherichia coli K88 via inhibition of the NF-κB and p38 mitogen-activated protein kinase signaling pathways in piglets. BMC Microbiology, 16(1), 273. https://doi.org/10.1186/s12866-016-0862-9

Lindgren, S. E. & Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Letters, 87(1−2), 149−164. https://doi.org/10.1111/j.1574-6968.1990.tb04885.x

Lipiński, K., Mazur-Kuśnirek, M., Antoszkiewicz, Z., Makowski, Z., Śliżewska, K., Siwicki, A., Otrocka-Domagała, I. & Gesek, M. (2021). The effect of synbiotics and probiotics on the growth performance, gastrointestinal function and health status of turkeys. Archives of Animal Nutrition, 75(5), 376−388. https://doi.org/10.1080/1745039X.2021.1958646

Manie, T., Khan, S., Brözel, V. S., Veith, W. J. & Gouws, P. A. (1998). Antimicrobial resistance of bacteria isolated from slaughtered and retail chickens in South Africa. Letters in Applied Microbiology, 26(4), 253−258. https://doi.org/10.1046/j.1472-765X.1998.00312.x

Markowiak, P. & Śliżewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9(9), 1021. https://doi.org/10.3390/nu9091021

Minitab, LLC. (2023). Minitab Statistical Software (Version 21.1) [Computer software]. (n.d.). https://www.minitab.com

Mohammadigheisar, M., Shirley, R. B., Barton, J., Welsher, A., Thiery, P. & Kiarie, E. (2019). Growth performance and gastrointestinal responses in heavy Tom turkeys fed antibiotic free corn−soybean meal diets supplemented with multiple doses of a single strain Bacillus subtilis probiotic (DSM29784). Poultry Science, 98(11), 5541−5550. https://doi.org/10.3382/ps/pez305

Mookiah, S., Sieo, C. C., Ramasamy, K., Abdullah, N. & Ho, Y. W. (2014). Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. Journal of the Science of Food and Agriculture, 94(2), 341−348.

National Research Council. (1994). Nutrient Requirements of Poultry (9th revised edition). National Academies Press. (n.d.).

Reuben, R. C., Sarkar, S. L., Ibnat, H., Setu, Md. A. A., Roy, P. C. & Jahid, I. K. (2021). Novel multi-strain probiotics reduces Pasteurella multocida induced fowl cholera mortality in broilers. Scientific Reports, 11(1), 8885. https://doi.org/10.1038/s41598-021-88299-0

Ribeiro Jr, V., Albino, L., Rostagno, H., Barreto, S., Hannas, M., Harrington, D., De Araujo, F., Ferreira Jr, H. & Ferreira, M. (2014). Effects of the dietary supplementation of Bacillus subtilis levels on performance, egg quality and excreta moisture of layers. Animal Feed Science and Technology, 195, 142−146. https://doi.org/10.1016/j.anifeedsci.2014.06.001

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671−675. https://doi.org/10.1038/nmeth.2089

Vahabi-Asil, O., Bouyeh, M., Qotbi, A., Kadim, I. T., Seidavi, A., Centoducati, G., Laudadio, V. & Tufarelli, V. (2017). Effects of a prebiotic on growth performance, blood parameters and immunity response of turkeys fed low protein diets. European Poultry Science (EPS), 81. https://doi.org/10.1399/eps.2017.196

Wang, C., Chang, T., Yang, H. & Cui, M. (2015). Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control, 47, 231−236.

Wells, J. M. (2011). Immunomodulatory mechanisms of lactobacilli. Microbial Cell Factories, 10(Suppl 1), S17. https://doi.org/10.1186/1475-2859-10-S1-S17

Zhao, X., Zhen, Z., Wang, X. & Guo, N. (2017). Synergy of a combination of nisin and citric acid against Staphylococcus aureus and Listeria monocytogenes. Food Additives & Contaminants: Part A, 34(12), 2058−2068. https://doi.org/10.1080/19440049.2017.1366076

Zheng, A., Luo, J., Meng, K., Li, J., Bryden, W. L., Chang, W., Zhang, S., Wang, L. X. N., Liu, G. & Yao, B. (2016). Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genomics, 17(1), 89. https://doi.org/10.1186/s12864-016-2371-5

Zoghi, A., Khosravi-Darani, K. & Sohrabvandi, S. (2014). Surface Binding of Toxins and Heavy Metals by Probiotics. Mini-Reviews in Medicinal Chemistry, 14(1), 84−98. https://doi.org/10.2174/1389557513666131211105554

Published

2025-05-21

Issue

Section

Articles

Most read articles by the same author(s)