RELATIONSHIP BETWEEN SEASONAL VARIATION IN THE COMPOSITION OF BULK TANK MILK AND PAYMENT BASED ON MILK QUALITY

Authors

  • Marcos Busanello Department of Animal Science, College of Agriculture, "Luiz de Queiroz"/University of São Paulo - ESALQ/USP, Campus Piracicaba, São Paulo, 13418-900, Brazil http://orcid.org/0000-0002-7354-6026
  • Ione Maria Pereira Haygert-Velho, Dr. Department of Animal Science and Biological Sciences, Federal University of Santa Maria, Campus de Palmeira das Missões, Rio Grande do Sul, 98300-000, Brazil http://orcid.org/0000-0002-6709-7340
  • Marcos André Piuco, Sr. State Technical School Celeste Gobbato, Palmeira das Missões, Rio Grande do Sul, 98300-000, Brazil
  • Vanessa Isabel Heck Department of Animal Science and Biological Sciences, Federal University of Santa Maria, Campus de Palmeira das Missões, Rio Grande do Sul, 98300-000, Brazil
  • Morgana Stürmer Department of Animal Science and Biological Sciences, Federal University of Santa Maria, Campus de Palmeira das Missões, Rio Grande do Sul, 98300-000, Brazil
  • Luiz Carlos Cosmam State Technical School Celeste Gobbato, Palmeira das Missões, Rio Grande do Sul, 98300-000, Brazil
  • João Pedro Velho, Dr. Department of Animal Science and Biological Sciences, Federal University of Santa Maria, Campus de Palmeira das Missões, Rio Grande do Sul, 98300-000, Brazil http://orcid.org/0000-0003-3901-8200

Keywords:

dairy science, milk production, multivariate analysis, principal component analysis

Abstract

Payment programs based on milk quality (PPBMQ) are important in the dairy sector as they enable farmers to improve profitability upon reaching payment based on milk quality (PBMQ). We used data submitted to a PPBMQ from a dairy farm referring to a four-year period (January 2013 − December 2016). Correlation, multiple regression, and principal component analysis were performed. We found significant correlations between PBMQ and fat (r = 0.32), protein (r = 0.51), and total bacterial count (TBC) (r = -0.66), as well as an effect of all studied variables on PBMQ using multiple regression analysis (with somatic cell count [SCC] also affecting PBMQ). Thus, protein and fat positively and SCC and TBC negatively affected PBMQ value. Principal component analysis revealed an inverse relationship between summer and winter months. In summer months, the PBMQ was affected by the increase of TBC and SCC and decrease protein, whereas in winter months, protein increase and TBC and SCC decrease were relevant. A varied behaviour was detected for the remaining months. Milk components (fat, protein, SCC, and TBC) significantly affected the final value the PBMQ paid to the farmer. Moreover, there was seasonal effect on PBMQ, with PBMQ being higher in winter months and lower in summer months. Variation in milk composition and payment due to the seasonality should be considered by farmers to reach higher values of bonuses, and by the dairy sector to plane adequate payment throughout the year.

References

Agriculture and Horticulture Development Board – Dairy (AHDB – Dairy). (2017). UK Milk Composition. https://dairy.ahdb.org.uk/market-information/supply-production/composition-and-hygiene/uk-milk-composition/#.Wi8DnlWnHIV.


Alessio, D. R. M., Thaler Neto, A., Velho, J. P., Pereira, I. B., Miquelluti, D. J., Knob, D. A. & Silva, C. G. (2016). Multivariate analysis of lactose content in milk of Holstein and Jersey cows. Semina Ciências Agrárias, 37(4), 2641–2652. http://dx.doi.org/10.5433/1679-0359.2016v37n4Supl1p2641


Banga, C. B., Neser, F. W. C., Van Der Westhuizen, J. & Garrick, D. J. (2009). Economic values for dairy production traits under different milk payment systems in South Africa. South African Journal of Animal Science, 39(5), 112−115.


Botaro, B. G., Gameiro A. H. & Dos Santos, M. V. (2013). Quality based payment program and milk quality in dairy cooperatives of Southern Brazil: an econometric analysis. Scientia Agricola, 70(1), 21−26. https://doi.org/10.1590/S0103-90162013000100004


BRASIL. (2011). Instrução Normativa nº 62, de 29 de dezembro de 2011. Ministério da Agricultura, Pecuária e do Abastecimento, Secretaria de Defesa Agropecuária.


BRASIL. (2018a). Instrução Normativa nº 76, de 26 de dezembro de 2018. Ministério da Agricultura, Pecuária e do Abastecimento, Secretaria de Defesa Agropecuária.


BRASIL. (2018b). Instrução Normativa nº 77, de 26 de dezembro de 2018. Ministério da Agricultura, Pecuária e do Abastecimento, Secretaria de Defesa Agropecuária.


Busanello, M., De Freitas, L. N., Winckler, J. P. P., Farias, H. P., Dias, C. T. S., Cassoli, L. D. & Machado, P. F. (2017a). Month-wise variation and prediction of bulk tank somatic cell count in Brazilian dairy herds and its impact on payment based on milk quality. Irish Veterinary Journal, 70(1), 1−13. https://doi.org/10.1186/s13620-017-0103-z


Busanello, M., Rossi, R. S., Cassoli, L. D., Pantoja, J. C. F. & Machado, P. F. (2017b). Estimation of prevalence and incidence of subclinical mastitis in a large population of Brazilian dairy herds. Journal of Dairy Science, 100(8), 6545–6553. https://doi.org/10.3168/jds.2016-12042


Cassoli, L. D. & Machado, P. F. (2016). Contagem Bacteriana Total (CBT). Mapa da Qualidade. Piracicaba. ESALQ/USP 2016. 2nd ed. Clínica do Leite.


Cassoli, L. D., Silva, J. & Machado, P. F. (2016). Contagem de Células Somáticas (CCS). Mapa da Qualidade. Piracicaba: ESALQ/USP. 1st ed. Clínica do Leite.


Çinar, M., Serbester, U., Ceyhan, A. & Gorgulu, M. (2015) Effect of somatic cell count on milk yield and composition of first and second lactation dairy cows. Italian Journal of Animal Science, 14(1), 3646−3108. https://doi.org/10.4081/ijas.2015.3646


Cohen, J., Cohen, P., West, S. G. & Aiken, L. S. (1983). Applied multiple regression/correlation analysis for the behavioral sciences. 3rd ed. New Jersey: Lawrence Erlbaum Associates.


Department of Agriculture, Environment and Rural Affairs. (2016). Northern Ireland milk quality statistics. https://www.daera-ni.gov.uk/sites/default/files/publications/dard/2016%20Milk%20Quality%20Stats%20Word%20Document.pdf.


Devitt, C., Mckenzie, K., More, S. J., Heanue, K. & Mccoy, F. (2013). Opportunities and constraints to improving milk quality in Ireland: enabling change through collective action. Journal of Dairy Science, 96(4), 2661–2670. https://doi.org/10.3168/jds.2012-6001


EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). (2017). Indicadores: Leite e derivados. 64th ed. EMBRAPA, Juiz de Fora.


Fagan, E. P., Jobim, C. C., Calixto Júnior, M., Da Silva, M. S. & Dos Santos, G. T. (2010). Environmental and handling factors on the chemical composition of milk in dairy farms of Paraná State, Brazil. Acta Scientiarum Animal Sciences, 32(3), 309−316. https://doi.org/10.4025/actascianimsci.v32i3.8570


Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3), 453−467. https://doi.org/10.2307/2334381


Geary, U., Lopez-Villalobos, N., O'Brien, B., Garrick, D. J. & Shalloo, L. (2014). Estimating the impact of somatic cell count on the value of milk utilising parameters obtained from the published literature. Journal of Dairy Research, 81(2), 223−232. https://doi.org/10.1017/S0022029914000053


Heck, J. M. L., Van Valenberg, H. J. F., Dijkstra, J. & Van Hooijdonk, A. C. M. (2009). Seasonal variation in the Dutch bovine raw milk composition. Journal of Dairy Science, 92(10), 4745−4755. https://doi.org/10.3168/jds.2009-2146


Hill, D. L. & Wall, E. (2015). Dairy cattle in a temperate climate: the effects of weather on milk yield and composition depend on management. Animal, 9(1), 138−149. https://doi.org/10.1017/S1751731114002456


Huijps, K., Hogeveen, H., Antonides, G., Valeeva, N. I., Lam, T. J. G. M. & Oude Lansink, A. G. J. M. (2010). Sub-optimal economic behaviour with respect to mastitis management. European Review of Agricultural Economics, 37(4), 553−568. https://doi.org/10.1093/erae/jbq036


Koop, G., Nielen, M. & Van Werven, T. (2009). Bulk milk somatic cell counts are related to bulk milk total bacterial counts and several herd-level risk factors in dairy goats. Journal of Dairy Science, 92(9), 4355−4364. https://doi.org/10.3168/jds.2009-2106


Kvapilík, J., Hanuš, O., Roubal, P., Říha, J., Urban, P., Jedelská, R., Seydlová, R., Klimešová, M. & Kopunecz, P. (2017). Somatic cells in bulk samples and purchase prices of cow milk. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65(3), 879−892. https://doi.org/10.11118/actaun201765030879


Manly, B. F. (2004). Multivariate Statistical Methods: A primer. 3rd ed. Laramie: Taylor & Francis.


Martins, G. A., Madalena, F. E., Bruschi, J. H., Costa, J. L. & Monteiro, J. B. N. (2003). Economic objectives for dairy cattle selection in a demonstration farm in the Zona da Mata de Minas Gerais. Revista Brasileira de Zootecnia, 32(2), 304−314. https://doi.org/10.1590/S1516-35982003000200008


Meneghini, R. C. M., Cassoli, L. D., Martines Filho, J. G., Xavier, C. E. O., Santos, M. V., Caixeta Filho, J. V., Natel, A. S. & Machado, P. F. (2016). How can dairies maximize their profits and properly remunerate their dairy farmers? Scientia Agricola, 73(1), 51−61. https://doi.org/10.1590/0103-9016-2014-0261


Michaličková, M., Krupová, Z. & Krupa, E. (2014). Determinants of economic efficiency in dairy cattle and sheep. Slovak Journal of Agricultural Science, 47(1), 39−50.


Michaličková, M., Krupová, Z. & Krupa, E. (2017). Economics of dual-purpose dairy cattle under various milk pricing systems. Bulgarian Journal of Agricultural Science, 23(2), 183−188.


More, S. J. (2009). Global trends in milk quality: implications for the Irish dairy industry. Irish Veterinary Journal, 62(4), 5−14. https://doi.org/10.1186/2046-0481-62-S4-S5


Murphy, S. C., Martin, N. H., Barbano, D. M. & Wiedmann, M. (2016). Influence of raw milk quality on processed dairy products: How do raw milk quality test results relate to product quality and yield? Journal of Dairy Science, 99(12), 10128−10149. https://doi.org/10.3168/jds.2016-11172


National Mastitis Council. (2013). 52nd Annual Meeting. San Diego: NMC.


Nightingale, C., Dhuyvetter, K., Mitchell, R. & Schukken, Y. (2008). Influence of variable milk quality premiums on observed milk quality. Journal of Dairy Science, 91(3), 1236–1244. https://doi.org/10.3168/jds.2007-0609


Nistor, E., Bampidis, V. A. & Pentea, M. (2014). Production traits of Romanian Simmental cows at first lactation. Slovak Journal of Animal Science, 47(3), 132−141.


Paixão, M. G., Lopes, M. A., Pinto, S. M. & De Abreu, L. R. (2014). Economic impact of the implementation of good agricultural practices related to milk quality. Revista Ceres, 61(5), 612−621. https://doi.org/10.1590/0034-737X201461050003


Pirisi, A., Lauret, A. & Dubeuf, J. P. (2007). Basic and incentive payments for goat and sheep milk in relation to quality. Small Ruminant Research, 68(1-2), 167−178. https://doi.org/10.1016/j.smallrumres.2006.09.009


Pirisi, A., Sanna, A. & Caria, A. (2000). Raw materials: quality and pricing. Bulletin of the International Dairy Federation, no 354.


Polsky, L. & Von Keyserlingk, M. A. G. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645−8657. https://doi.org/10.3168/jds.2017-12651


Rencher, A. C. (2002). Methods of Multivariate Analysis. 2nd ed. New York: John Wiley & Sons, Inc.


Roma Júnior, L. C., Montoya, J. F. G., Martins, T. T., Cassoli, L. D. & Machado, P. F. (2009). Seasonability of protein and others milk components related with quality payment program. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 61(6), 1411−1418. https://doi.org/10.1590/S0102-09352009000600022


Saenger, C., Qaim, M., Torero, M. & Viceisza, A. (2013). Contract farming and smallholder incentives to produce high quality: experimental evidence from the Vietnamese dairy sector. Agricultural Economics, 44(3), 297–308. https://doi.org/10.1111/agec.12012


Sant'Anna, A. C. & Costa, M. J. R. P. (2011). The relationship between dairy cow hygiene and somatic cell count in milk. Journal of Dairy Science, 94(8), 3835−3844. https://doi.org/10.3168/jds.2010-3951


Sargeant, J. M. & O'Connor, A.M. (2014). Issues of reporting in observational studies in veterinary medicine. Preventive Veterinary Medicine, 113(3), 323−330. https://doi.org/10.1016/j.prevetmed.2013.09.004


SAS Institute. (2012). 2000. Release 8.02. 2000. Cary: SAS Inst. Inc.


Simioni, F. J., Lopes, L. S., Nespolo, C. R., Stefani, L. M., Bordignon, R. & Bittelbrun, M. S. (2014). Season influence on milk physico-chemical and microbiological aspects in Western Santa Catarina. Semina Ciências Agrárias, 35(4), 2033−2046. https://doi.org/10.5433/1679-0359.2014v35n4p2033


Sneddon, N. W., Lopez-Villalobos, N., Hickson, R. E. & Shalloo, L. (2013). Review of milk payment systems to identify the component value of lactose. Proceedings of the New Zealand Society of Animal Production, 73, 33−36.


Stürmer, M., Busanello, M., Velho, J. P., Heck, V. I. & Haygert-Velho, I. M. P. (2018). Relationship between climatic variables and the variation in bulk tank milk composition using canonical correlation analysis. International Journal of Biometeorology, 62(9), 1663−1674. https://doi.org/10.1007/s00484-018-1566-7


Tančin, V., Kirchnerová, K., Foltys, V., Mačuhová, L. & Tančinová, D. (2006). Microbiological contamination and somatic cell count of bovine milk stripped before and after udder preparation for milking. Slovak Journal of Animal Science, 39(4), 214−217.


Tančin, V. (2013). Somatic cell counts in milk of dairy cows under practical conditions. Slovak Journal of Animal Science, 46(1), 31−34.


Tančin, V., Mikláš, Š. & Mačuhová, L. (2018). Possible physiological and environmental factors affecting milk production and udder health of dairy cows: A review. Slovak Journal of Animal Science, 51(1), 32−40.


Teixeira Júnior, F. E. P., Lopes, M. A. & Ruas, J. R. M. (2015). Effect of payment for milk quality on the profitability of dairy farming. Revista do Instituto de Laticínios Cândido Tostes, 70(1), 24−34. https://doi.org/10.14295/2238-6416.v70i1.375


Valeeva, N. I., Lam, T. J. G. M. & Hogeveen, H. (2007). Motivation of dairy farmers to improve mastitis management. Journal of Dairy Science, 90(9), 4466−4477. https://doi.org/10.3168/jds.2007-0095

Downloads

Published

2020-09-30

Issue

Section

Articles