ANALYSIS OF FATTY ACIDS IN SUBCUTANEOUS FAT OF BERRICHON DU CHER AND SUFFOLK HEAVY LAMBS IN SEMI-INTENSIVE PRODUCTION SYSTEMS IN SLOVAKIA

Authors

  • Marta Oravcová NPPC – Research Institute for Animal Production Nitra, Lužianky, Slovak Republic
  • Milan Margetín NPPC – Research Institute for Animal Production Nitra, Lužianky, Slovak Republic; Slovak University of Agriculture in Nitra, Department of Animal Husbandry, Faculty of Agrobiology and Food Resources, Nitra, Slovak Republic
  • Jaroslav Blaško Comenius University, Institute of Chemistry, Faculty of Natural Sciences, Bratislava, Slovak Republic
  • Andrze Junkuszew University of Life Sciences, Institute of Animal Breeding & Biodiversity Conservation, Lublin, Poland

Keywords:

sheep, production system, sex, tail fat, fatty acids

Abstract

The objective of the study was to determine the content of fatty acids (FAs) in subcutaneous fat from tailhead area of heavy lambs of Berrichon du Cher (BE) and Suffolk (SF) breeds. Lambs of both sexes were kept in semi-intensive production systems (SI1 and SI2). The production systems differed in nutrition during period of two weeks before slaughter: BE/SI1 lambs were fed with hay and concentrates, SF/SI2 lambs were on pasture and dam milk. The analysis of variance with two factors − breed/production system (BE/SI1, SF/SI2) and lamb sex (males, females) was applied to investigate differences between lamb groups. The content of essential FAs (sum of linoleic and α-linolenic acids), determined by a gas chromatography method, was higher (P < 0.001) in subcutaneous fat of BE/SI1 lambs (2.90 g.100 g-1 FAME) when compared to SF/SI2 lambs (2.53 g.100 g-1 FAME). The contents of arachidonic and docosapentaeonic acids were higher (P < 0.05) in BE/SI1 lambs (0.08 and 0.15 g.100 g-1 FAME) than in SF/SI2 lambs (0.05 and 0.12 g.100 g-1 FAME), whereas the contents of eicosapentaeonic and docosahexaenoic acids did not differ between groups. The content of conjugated linoleic acid (CLA) was higher (P < 0.001) in SF/SI2 lambs than in BE/SI1 lambs (1.84 and 1.09 g.100 g-1 FAME). In relation to sex, the content of CLA in ewe lambs (1.60 g.100 g-1 FAME) was higher (P < 0.05) than in ram lambs (1.33 g.100 g-1 FAME). The content of docosapentaeonic acid was also higher (P < 0.05) in ewe lambs (0.16 vs. 0.12 g.100 g-1 FAME). These findings contribute to expanding knowledge about sheep breeds in Slovakia.

References

Aurousseau, B., Bauchart, D., Faure, X., Galot, A. L., Prache, S., Micol, D. & Priolo, A. (2007). Indoor fattening of lambs raised on pasture: (1) Influence of stall finishing duration on lipid classes and fatty acids in the longissimus thoracis muscle. Meat Science, 76, 241−252.

Díaz, M. T., Álvarez, I., De La Fuente, J., Sanudo, C., Campo, M. M., Oliver, M. A., Font I Furnols, M., Montossi, F., San Julián, R., Nute, G. R. & Caneque, V. (2005). Fatty acid composition of meat from typical lamb production systems in Spain, United Kingdom, Germany and Uruguay. Meat Science, 71, 256−263.

Fiori, M., Scintu, M. F., Sitzia, M. & Addis, M. (2013). Dietary effects on meat chemical traits and fatty acid composition in intramuscular lipids of Sarda x Ile de France heavy lambs. In Ben Salem H. (ed.), López-Francos A. (ed.). Feeding and management strategies to improve livestock productivity, welfare and product quality under climate change. Zaragoza: CIHEAM/INRAT/OEP/IRESA/FAO (Options Méditerranéennes: Série A. Séminaires Méditerranéens, 107, 201−205.

Fisher, A. V., Enser, M., Richardson, R. I., Wood, J. D., Nute, G. R., Kurt, E., Sinclair, L. A. & Wilkinson, R. G. (2000). Fatty acid composition and eating quality of lamb types derived from four diverse breed x production systems. Meat Science, 55, 141−147.

Horcada-Ibánez, A., Beriain-Apesteguía, M. J., Lizaso-Tirapu, G., Insausti-Barrenetxea, K. & Purroy-Unanua, A. (2009). Effect of sex and fat depot location on fat composition of rasa Aragonesa lambs. Agrociencia, 44, 803−813.

Hosseini-Vashan, S. J., Malekaneh, M. & Allahressani, A. (2016). Evaluation the cis and trans fatty acid composition in the sheep's fat-tail and meat of Baluchi sheep in South Khorasan province. Iranian Journal of Animal Science Research, 8, 34−42.

Howes, N. L., Bekhit, A., Burrit, D. J. & Campbell, A. W. (2015). Opportunities and implications of pasture-based lamb fattening to enhance the long-chain fatty acid composition in meat. Comprehensive Reviews in Food Science and Food Safety, 14, 22−36.

Janíček, M., Margetín, M. & Oravcová, M. (2019). Fatty acids profile of subcutaneous fat in heavy carcass lambs of Ile de France breed from different rearing systems. In Animal Breeding 2019, Brno: Mendel University, 25−33.

Janíček, M., Margetín, M., Vavrišínová, K. & Hozáková, K. (2020). Effect of production system on fatty acid composition in subcutaneous adipose tissue of Ile de France lambs. Acta Fytotechnica et Zootechnica, 23, 174−179.

Kaczor, U., Borys, B. & Pustowiak, H. (2010). Effect of intensive fattening of lambs with forages on the fatty acide profile of intramuscular and subcutaneous fat. Czech Journal of Animal Science, 55, 408−419.

Li, Y., Li, Y. B. & Liu, C. J. (2017). Changes in lipid oxidation and fatty acids in Altay sheep fat during a long-time of low-temperature storage. Journal of Oleo Science, 66, 321−337.

Mahachi, L. N, Rudman, M., Arnaud, E., Muchenje, V. & Hoffman, L. C. (2020). Application of fat-tailed sheep tail and backfat to develop novel warthog cabanossi with distinct sensory attributes. Foods, 9, 1822, 18 p.

Maleki, E., Kafilzadeh, F., Meng, G. Y., Rajion, M. A. & Ebrahimi, M. (2015). The effect of breed on fatty acid composition of subcutaneous adipose tissues in fat-tailed sheep under identical feeding conditions. South African Journal of Animal Science, 45, 12−19.

Margetín, M., Apolen, D., Oravcová, M., Vavrišinová, K., Peškovičová, D., Luptáková, L., Krupová, Z., Bučko, O. & Blaško, J. (2014). Fatty acids profile of intramuscular fat in light lambs traditionally and artificially reared. Journal of Central European Agriculture, 15, 117−129.

Margetín, M., Oravcová, M., Margetínová, J. & Kubinec, R. (2018). Fatty acids in intramuscular fat of Ile de France lambs in two different production systems. Archives Animal Breeding, 61, 395−403.

Margetín, M., Oravcová, M., Margetínová, J., Kubinec, R. & Janíček, M. (2019). Fatty acids in the intramuscular fat of Berrichon du Cher and Suffolk heavy lambs kept in semi-intensive production systems in Slovakia. Slovak Journal of Animal Science, 52, 81−89.

McAfee, A. J., McSorley, E. M., Cuskelly, G. J., Moss, B. W., Wallace, J. M. W., Bonham, M. P. & Fearon, A. M. (2010). Red meat consumption: An overview of the risks and benefits. Meat Science, 84, 1−13.

Momen, M., Kashan, N. E. J., Sharifi, S. D., Roudbar, M. A. & Mehrgardi, A. A. (2016). Fatty acid composition of fat-tail and visceral fat depots from Chaal and Zandi pure bred lambs and their crosses with Zel (three Iranian breeds). Iranian Journal of Applied Animal Science, 6, 107−112.

Mortimer, S. I., Van Der Werf, J. H. J., Jacob, R. H., Hopkins, D. L., Pannier, L., Pearce, K. L., Gardner, G. E., Warner, R. D., Geesing, G. H., Hocking Edwards, J. E., Ponnampalam, E. N., Ball, A. J., Gilmour, A. R. & Pethick, D. W. (2014). Genetic parameters for meat quality traits of Australian lamb meat. Meat Science, 96, 1016−1024.

Nuernberg, K., Fischer, A., Nuernberg, G., Ender, K. & Dannenberger, D. (2008). Meat quality and fatty acid composition of lipids in muscle and fatty tissue of Skudde lambs fed grass versus concentrate. Small Ruminant Research, 74, 279−283.

Ponnampalam, E. N., Butler, K. L., Pearce, K. M., Mortimer, S. I., Pethick, D. W., Ball, A. J. & Hopkins, D. L. (2014). Sources of variation of health claimable long chain omega-3 fatty acids in meat from Australian lamb slaughtered at similar weights. Meat Science, 96, 1095−1110.

Raes, K., De Smet, S. & Demeyer, D. (2004). Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Animal Feed Science and Technology, 113, 199−221.

Santos-Silva, J., Bessa, R. J. B. & Santos-Silva, F. (2002). Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livestock Production Science, 77, 187−194.

Sanudo, C., Enser, M. E., Campo, M. M., Nute, G. R., María, G., Sierra, I. & Wood, J. D. (2000). Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Science, 54, 339−346.

SAS Institute Inc. (2009) SAS/STAT ® 9.2 User's Guide, Second Edition, Cary, NC USA.

Serra, A., Mele, M., La Comba, F., Conte, G., Buccioni, A. & Secchiari, P. (2009). Conjugated Linoleic Acid (CLA) content of meat from three muscles of Massese suckling lambs slaughtered at different weights. Meat Science, 81, 396−404.

Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Dossier: polyunsaturated fatty acids in biology and diseases. Biomedicine & Pharmacotherapy, 56, 365−379.

Sinanoglou, V. J., Batrinou, A., Mantis, F., Bizelis, I. & Miniadis-Meimaroglou, S. (2013). Lipid quality indices: Differentiation of suckling lamb and kid breeds reared by traditional sheep farming. Small Ruminant Research, 113, 1−10.

Swanson, D., Block, R. & Mousa, S. A. (2012). Omega3 fatty acids EPA and DHA: Health benefit throughout life. Advances in Nutrition, 3, 1−7.

Ulbricht, T. L. V. & Southgate, D. A. T. (1991). Coronary heart disease seven dietary factors. The Lancet, 338, 985−992.

Williams, C. M. (2000). Dietary fatty acids and human health. Annales de Zootechnia, 49, 165−180.

Wood, J. D. & Enser, M. (1997). Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. British Journal of Nutrition, 78, 49−60.

Wood, J. D., Richardson, R. I., Nute, G. R., Fischer, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R. & Enser, M. (2003). Effects of fatty acids on meat quality: a review. Meat Science, 66, 21−32.

Downloads

Published

2021-12-30