RABBIT ADIPOSE-DERIVED STEM CELLS MAINTAIN THEIR CHROMOSOMAL COUNTS DURING PASSAGING
Keywords:
rabbit, adipose derived stem cells, chromosomes, karyotypeAbstract
Monitoring of stem cells genetic stability is one of the most important safety points, because the number of chromosomes can change throughout the culture and in vitro manipulation of these cells. In our study the stem cells metaphases were analysed using the G-staining method. At least 60 metaphases in three samples of rabbit adipose-derived stem cells were assessed in three subsequent passages. Results of our study showed that at least 70 % of cells in each passage can maintain their stable karyotype. The highest proportion of aneuploidy (30 %) was recorded in the third passage. Even though we observed a slight increase of aneuploidy during passaging, statistical analysis did not show any significant differences. Based on our results, we can conclude that cell passaging does not affect genetic stability, since there were no changes in chromosomal counts throughout the culture. However, it was observed that there may be some instabilities during passaging that are more random. For this reason, it is recommended to monitor the stem cells' karyotype, especially if they are intended for therapeutic use.
References
<br>Ben-David, U., Mayshar, Y., & Benvenisty, N. (2011). Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell, 9(2), 97–102.
<br>Binato, R., de Souza Fernandez, T., Lazzarotto-Silva, C., Du Rocher, B., Mencalha, A., Pizzatti, L., Bouzas, L. F. & Abdelhay, E. (2013). Stability of human mesenchymal stem cells during in vitro culture: considerations for cell therapy. Cell Proliferation, 46(1), 10–22.
<br>Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., & Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 7(1), 14.
<br>Catalina, P., Cobo, F., Cortés, J. L., Nieto, A. I., Cabrera, C., Montes, R., Concha, A. & Menendez, P. (2007). Conventional and molecular cytogenetic diagnostic methods in stem cell research: a concise review. Cell Biology International, 31(9), 861–869.
<br>Casiraghi, F., Remuzzi, G., Abbate, M., & Perico, N. (2013). Multipotent mesenchymal stromal cell therapy and risk of malignancies. Stem Cell Reviews and Reports, 9(1), 65–79.
<br>Curlej, J., Tomková, M., Vasicek, J., & Chrenek, P. (2018). Cytogenetic studies of mesenchymal stem cells in rabbit: A mini-review. Slovak Journal of Animal Science, 51(4), 150–155.
<br>Du, Y., Roh, D. S., Funderburgh, M. L., Mann, M. M., Marra, K. G., Rubin, J. P., Li, X. & Funderburgh, J. L. (2010). Adipose-derived stem cells differentiate to keratocytes in vitro. Molecular Vision, 10(16), 2680–2689.
<br>Ferreira, R. J., Irioda, A. C., Cunha, R. C., Francisco, J. C., Guarita-Souza, L. C., Srikanth, G. V., Nityanand, S., Rosati, R., Chachques, J. C. & de Carvalho, K. A. (2012). Controversies about the chromosomal stability of cultivated mesenchymal stem cells: their clinical use is it safe? Current Stem Cell Research & Therapy, 7(5), 356–363.
<br>Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24(5), 1294–1301.
<br>Kim, J. H., Jung, M., Kim, H. S., Kim, Y. M., & Choi, E. H. (2011). Adipose-derived stem cells as a new therapeutic modality for ageing skin. Experimental Dermatology, 20(5), 383–387.
<br>Kovac, M., Vasicek, J., Kulikova, B., Bauer, M., Curlej, J., Balazi, A., & Chrenek, P. (2017). Different RNA and protein expression of surface markers in rabbit amniotic fluid-derived mesenchymal stem cells. Biotechnology Progress, 33(6), 1601–1613.
<br>Kulikova, B., Kovac, M., Bauer, M., Tomkova, M., Olexikova, L., Vasicek, J., Balazi, A., Makarevich, A. V. & Chrenek, P. (2019). Survivability of rabbit amniotic fluid-derived mesenchymal stem cells post slow-freezing or vitrification. Acta Histochemica, 121(4), 491–499.
<br>Meza-Zepeda, L. A., Noer, A., Dahl, J. A., Micci, F., Myklebost, O., & Collas, P. (2008). High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. Journal of Cellular and Molecular Medicine, 12(2), 553–563.
<br>Neri, S., Bourin, P., Peyrafitte, J. A., Cattini, L., Facchini, A., & Mariani, E. (2013). Human adipose stromal cells (ASC) for the regeneration of injured cartilage display genetic stability after in vitro culture expansion. PloS One, 8(10), e77895.
<br>Sensebé, L., Tarte, K., Galipeau, J., Krampera, M., Martin, I., Phinney, D. G., & Shi, Y. (2012). Limited acquisition of chromosomal aberrations in human adult mesenchymal stromal cells. Cell Stem Cell, 10(1), 9–10.
<br>Sperka, T., Wang, J., & Rudolph, K. L. (2012). DNA damage checkpoints in stem cells, ageing and cancer. Nature reviews Molecular Cell Biology, 13(9), 579.
<br>Stultz, B. G., McGinnis, K., Thompson, E. E., Surdo, J. L. L., Bauer, S. R., & Hursh, D. A. (2016). Chromosomal stability of mesenchymal stromal cells during in vitro culture. Cytotherapy, 18(3), 336–343.
<br>Tomková, M., Vašíček, J., Kulíková, B., Baláži, A., & Chrenek, P. (2017). Comparison of rabbit endothelial progenitor cells and mesenchymal stem cells: cytogenetic approach. Slovak Journal of Animal Science, 50(2), 73–76.
<br>Tomková, M., Kulíková, B., Vašíček, J., Baláži, A., Makarevič, A., & Chrenek, P. (2018). Effect of different culture medium on cultivation of adipose tissue derived stem cells from two biological sources. The Journal of Microbiology, Biotechnology and Food Sciences, 8(2), 798.
<br>Vašíček, J., Kováč, M., Baláži, A., Kulíková, B., Tomková, M., Olexiková, L., Čurlej, J., Bauer, M., Schnabl, S., Hilgarth, M., Hubmann, R., Shehata, M., Makarevich, A. V. & Chrenek, P. (2020). Combined approach for characterization and quality assessment of rabbit bone marrow-derived mesenchymal stem cells intended for gene banking. New Biotechnology, 54, 1–12. (doi: 10.1016/j.nbt.2019.08.001. Epub 2019 Aug 7).</div>