APPLICATION OF MICROBIAL AGENTS TO CONTROL DISEASES IN AGRICULTURE WITH A FOCUS TO BEEKEEPING: A REVIEW

A REVIEW

Authors

  • Vladimira Knazovicka NPPC – Research Institute for Animal Production Nitra, Institute of Apiculture Liptovský Hrádok, Slovak Republic
  • Judita Lidikova Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Nitra, Slovak Republic
  • Silvia Jakabova Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Nitra, Slovak Republic
  • Miroslav Krocko Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Nitra, Slovak Republic
  • Slavomira Bellova Catholic University in Ružomberok, Faculty of Education, Ružomberok, Slovak Republic
  • Martin Staron NPPC – Research Institute for Animal Production Nitra, Institute of Apiculture Liptovský Hrádok, Slovak Republic
  • Simona Bencatova NPPC – Research Institute for Animal Production Nitra, Institute of Apiculture Liptovský Hrádok, Slovak Republic
  • Silvino Vargas Hernandez Universidad Central "Marta Abreu" de Las Villas, Facultad de Ciencias Agropecuarias, Santa Clara, Villa Clara, Cuba
  • Ariany Colas Sanchez Universidad Central "Marta Abreu" de Las Villas, Facultad de Ciencias Agropecuarias, Santa Clara, Villa Clara, Cuba
  • Yordanys Ramos Universidad Central "Marta Abreu" de Las Villas, Facultad de Ciencias Agropecuarias, Santa Clara, Villa Clara, Cuba

Keywords:

bee immunity, probiotics, antagonism, Lactobacillus kunkeei, prophylaxis

Abstract

This review describes the system of the biocontrol of diseases using microorganisms with specific regard to potential use in beekeeping. Diseases are caused mainly by microorganisms. The gut microbiota has a special important role in animal health. A hypothesis assumes that the use of other microorganisms can provide effective protection against diseases. In our review we focused on probiotics as a supplementary agent in animal nutrition with positive results on intestinal microbiota. The four main mechanisms on how they work are: direct antagonism, competition for nutrients/energy, occupation of susceptible receptors and stimulation of immunity. The probiotics group includes various bacteria, yeasts, filamentous fungi or bacteriophages. The best known representatives are lactobacilli and bifidobacteria. The use of probiotics in nutrition of poultry, cattle, pigs, lambs, aquatic animals as well as bees was tested. The lactic acid bacteria specific for honey bee, with the main representative Lactobacillus kunkeei, have confirmed strong antimicrobial activity against pathogens, e.g. Paenibacillus larvae, causative agent of American Foulbrood. However, these bacteria were not effective in field studies. Successful use of probiotics in beekeeping depends on various factors, including high level of pesticides or contaminants in bee surrounding, which could negatively influence bee microbiota.

References

<div align="justify"><sup>a</sup>Parte, A. C., Sardà Carbasse, J., Meier-Kolthoff, J. P., Reimer, L. C. & Göker, M. (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology, 70, 5607−5612. [cit. 7 Dec 2020]. https://doi.org/10.1099/ijsem.0.004332
<br><sup>b</sup>The Global Biodiversity Information Facility [cit. 17 Dec 2020]. Retrieved from: https://www.gbif.org/
<br>Albright, M. B. N., Sevanto, S., Gallegos-Graves, L. V. & Dunbar, J. (2020). Biotic interactions are more important than propagule pressure in microbial community invasions. mBio, 11(5), e02089−20. https://doi.org/10.1128/mBio.02089-20
<br>Aldayel, M. F. (2019). Biocontrol strategies of antibiotic-resistant, highly pathogenic bacteria and fungi with potential bioterrorism risks: Bacteriophage in focus. Journal of King Saud University − Science, 31(4), 1227−1234. https://doi.org/10.1016/j.jksus.2019.08.002
<br>Bellutti, N., Gallmetzer, A., Innerebner, G., Schmidt, S., Zelger, R. & Koschier, E. H. (2018). Dietary yeast affects preference and performance in Drosophila suzukii. Journal of Pest Science, 91, 651−660. https://doi.org/10.1007/s10340-017-0932-2
<br>Chen, H. (2020). Animal Disease Control: Challenges and Perspectives. Engineering, 6(1), 1. https://doi.org/10.1016/j.eng.2019.11.011
<br>Chlebo, R. (2017). Podmienky rozvoja včelárstva na Slovensku. [Conditions for the development of beekeeping in Slovakia.] Nitra: Slovenská poľnohospodárska univerzita v Nitre.
<br>Dostálková, S., Dobeš, P., Kunc, M., Hurychová, J., Škrabišová, M., Petřivalský, M., Titěra, D., Havlík, J., Hyršl, P. & Danihlík, J. (2021). Winter honeybee (Apis mellifera) populations show greater potential to induce immune response than summer ones after immune stimuli. Journal of Experimental Biology, 224, jeb232595. http://doi.org/10.1242/jeb.232595
<br>Falcão-e-Cunha, L., Castro-Solla, L., Maertens, L., Marounek, M., Pinheiro, V., Freire, J. & Mourão, J. L. (2007). Alternatives to antibiotic growth promoters in rabbit feeding: a review. World Rabbit Science, 15(3), 127−140. https://doi.org/10.4995/wrs.2007.597
<br>Farrell, M. J. & Davies, T. J. (2019). Disease mortality in domesticated animals is predicted by host evolutionary relationships. Proceedings of the National Academy of Sciences, 116(16), 7911−7915. https://doi.org/10.1073/pnas.1817323116
<br>Francis, F., Jacquemyn, H., Delvigne, F. & Lievens, B. (2020). From Diverse Origins to Specific Targets: Role of Microorganisms in Indirect Pest Biological Control. Insects, 11(8), 533. https://doi.org/10.3390/insects11080533
<br>Fuentealba, A., Bauce, É. & Dupont, A. (2015). Bacillus thuringiensis efficacy in reducing spruce budworm damage as affected by host tree species. Journal of Pest Science, 88, 593−603. https://doi.org/10.1007/s10340-014-0629-8
<br>Fuller, R. (1994). Probiotics: An Overview. In S. A. W. Gibson (Ed), Human Health, (pp. 63−73). London: Springer Series in Applied Biology.
<br>Geldert, C., Abdo, Z., Stewart, J. E. & Arathi, H. S. (2021). Dietary supplementation with phytochemicals improves diversity and abundance of honey bee gut microbiota. Journal of Applied Microbiology, 130(5), 1705−1720. https://doi.org/10.1111/jam.14897
<br>Grace, D. (2020). Animal Disease Research: Key Issues. Engineering, 6(1), 8−9. https://doi.org/10.1016/j.eng.2019.11.005
<br>Haščík, P., Pavelková, A., Tkáčová, J., Čuboň, J., Kačániová, M., Habánová, M. & Mlyneková, E. (2020). The amino acid profile of broiler chicken meat after dietary administration of bee products and probiotics. Biologia, 75, 1899−1908. https://doi.org/10.2478/s11756-020-00451-9
<br>Kačániová, M., Terentjeva, M., Žiarovská, J. & Kowalczewski, P. (2020). In vitro antagonistic effect of gut bacteriota isolated from indigenous honey bees and essential oils against Paenibacillus larvae. International Journal of Molecular Sciences, 21, 6736. https://doi.org/10.3390/ijms21186736
<br>Kelsey, A. J. & Colpoys, J. D. (2018). Effects of dietary probiotics on beef cattle performance and stress. Journal of Veterinary Behavior, 27, 8−14. https://doi.org/10.1016/j.jveb.2018.05.010.
<br>Lamei, S., Stephan, J. G., Nilson, B., Sieuwerts, S., Riesbeck, K., de Miranda, J. R. & Forsgren, E. (2020). Feeding Honeybee Colonies with Honeybee-Specific Lactic Acid Bacteria (Hbs-LAB) Does Not Affect Colony-Level Hbs-LAB Composition or Paenibacillus larvae Spore Levels, Although American Foulbrood Affected Colonies Harbor a More Diverse Hbs-LAB Community. Microbial Ecology, 79(3), 743−755. https://doi.org/10.1007/s00248-019-01434-3
<br>Liu, T., Su, B., Wang, J., Zhang, C. & Shan, A. (2013). Effects of Probiotics on Growth, Pork Quality and Serum Metabolites in Growing-finishing Pigs. Journal of Northeast Agricultural University (English Edition), 20(4), 57−63. https://doi.org/10.1016/S1006-8104(14)60048-9
<br>de Medeiros, F. H. V. & da Silva, J. C. P. (2019). Plant Diseases. In B. Souza, L. Vázquez, R. Marucci (Ed), Natural Enemies of Insect Pests in Neotropical Agroecosystems (pp. 451−466). Cham: Springer. https://doi.org/10.1007/978-3-030-24733-1_36
<br>Motta, E. V. S., Raymann, K. & Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences, 115(41), 10305−10310. https://doi.org/10.1073/pnas.1803880115
<br>Nava, G., Bielke, L., Callaway, T. & Castañeda, M. (2005). Probiotic alternatives to reduce gastrointestinal infections: The poultry experience. Animal Health Research Reviews, 6(1), 105−118. https://doi.org/10.1079/AHR2005103
<br>Niode, N. J., Salaki, C. L., Rumokoy, L. J. M. & Tallei, T. E. (2020). Lactic Acid Bacteria from Honey Bees Digestive Tract and Their Potential as Probiotics. International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019), Advances in Biological Sciences Research, 8, 236−241.
<br>Ondráčková, E. (2015). The use of entomopathogenic fungi in biological control of pests. Acta Fytotechnica et Zootechnica, 18(special issue), 102−105. https://doi.org/10.15414/afz.2015.18.si.102-105
<br>Pinloche, E., McEwan, N., Marden, J. P., Bayourthe, C., Auclair, E. & Newbold, C. J. (2013) The Effects of a Probiotic Yeast on the Bacterial Diversity and Population Structure in the Rumen of Cattle. PLOS One, 8(7), e67824. https://doi.org/10.1371/journal.pone.0067824
<br>Polenogova, O. V., Kabilov, M. R., Tyurin, M. V., Rotskaya, U. N., Krivopalov, A. V., Morozova, V. V., Mozhaitseva, K., Kryukova, N. A., Alikina, T., Kryukov, V. Y. & Glupov, V.V. (2019). Parasitoid envenomation alters the Galleria mellonella midgut microbiota and immunity, thereby promoting fungal infection. Scientific Reports, 9, 4012. https://doi.org/10.1038/s41598-019-40301-6
<br>Ptaszyńska, A. A., Borsuk, G., Zdybicka-Barabas, A., Cytryńska, M. & Małek, W. (2016). Are commercial probiotics and probiotics effective in the treatment and prevention of honeybee nosemosis C? Parasitology Research, 115(1), 397−406. https://doi.org/10.1007/s00436-015-4761-z
<br>Rada, V. & Petr, J. (2000). A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. Journal of Microbiological Methods, 43(2), 127−132. https://doi.org/10.1016/S0167-7012(00)00205-0
<br>Raji, A. R. M. (2020). Strategies for the control of Infectious Animal Disease [technical report – online pdf]. Retrieved from: https://www.researchgate.net
<br>Redweik, G. A. J., Stromberg, Z. R., Van Goor, A. & Mellata, M. (2020). Protection against avian pathogenic Escherichia coli and Salmonella Kentucky exhibited in chickens given both probiotics and live Salmonella vaccine. Poultry Science, 99(2), 752−762. https://doi.org/10.1016/j.psj.2019.10.038
<br>Ricigliano, V. A. (2020). Microalgae as a promising and sustainable nutrition source for managed honey bees. Archives of Insect Biochemistry and Physiology, 104(1), e21658. https://doi.org/10.1002/arch.21658
<br>Shimanuki, H. & Knox, D. A. (2000). Diagnosis of Honey Bee Diseases. Washington: United States Department of Agriculture.
<br>Siggers, R. H., Siggers, J., Boye, M., Thymann, T., Mølbak, L., Leser, T., Jensen, B. B. & Sangild, P. T. (2008). Early Administration of Probiotics Alters Bacterial Colonization and Limits Diet-Induced Gut Dysfunction and Severity of Necrotizing Enterocolitis in Preterm Pigs. The Journal of Nutrition, 138(8), 1437−1444. https://doi.org/10.1093/jn/138.8.1437
<br>Silva, D. R., de Cássia Orlandi Sardi, J., de Souza Pitangui, N., Roque, S. M., da Silva, A. C. B. & Rosalen, P. L. (2020). Probiotics as an alternative antimicrobial therapy: Current reality and future directions. Journal of Functional Foods, 73, 104080. https://doi.org/10.1016/j.jff.2020.104080
<br>Staskawicz, B. J., Mudgett, M. B., Dangl, J. L. & Galan, J. E. (2001). Common and contrasting themes of plant and animal diseases. Science, 292(5525), 2285−2289. https://doi.org/10.1126/science.1062013
<br>Stenberg, J. A., Heil, M., Åhman, I. & Björkman, Ch. (2015). Optimizing Crops for Biocontrol of Pests and Disease. Trends in Plant Science, 20(11), 698−712. https://doi.org/10.1016/j.tplants.2015.08.007
<br>Taras, D., Vahjen, W. & Simon, O. (2007). Probiotics in pigs − modulation of their intestinal distribution and of their impact on health and performance. Livestock Science, 108(1–3), 229−231. https://doi.org/10.1016/j.livsci.2007.01.075.
<br>Uyeno, Y., Shigemori, S. & Takeshi Shimosato, T. (2015). Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes and Environments, 30(2), 126−132. https://doi.org/10.1264/jsme2.ME14176
<br>Vásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L. & Olofsson, T. C. (2012) Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees. PLOS One, 7(3): e33188. https://doi.org/10.1371/journal.pone.0033188
<br>Verschuere, L., Rombaut, G., Sorgeloos, P. & Verstraete, W. (2000). Probiotic Bacteria as Biological Control Agents in Aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655−671. https://doi.org/10.1128/MMBR.64.4.655-671.2000
<br>Vlková, E., Grmanová, M., Rada, V., Homutová, I. & Dubná, S. (2009). Selection of probiotics bifidobacteria for lambs. Czech Journal of Animal Science, 54(12), 552−565.
<br>Wang, H., Lee, I. S., Braun, C. & Enck, P. (2016). Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review. Journal of Neurogastroenterology and Motility, 22(4), 589−605. https://doi.org/10.5056/jnm16018</div>

Downloads

Published

2021-06-25

Issue

Section

Reviews

Most read articles by the same author(s)