CURRENT KNOWLEDGE ABOUT MICROORGANISMS USED IN BIOLOGICAL CONTROL OF PESTS AND THEIR RELATION TO BEES: A REVIEW

Authors

  • Vladimíra KŇAZOVICKÁ NPPC – Research Institute for Animal Production Nitra, Institute of Apiculture Liptovský Hrádok, Dr. J. Gašperíka 599, 033 01 Liptovský Hrádok, Slovak Republic
  • Simona BENČAŤOVÁ NPPC – Research Institute for Animal Production Nitra, Institute of Apiculture Liptovský Hrádok, Dr. J. Gašperíka 599, 033 01 Liptovský Hrádok, Slovak Republic
  • Martin STAROŇ NPPC – Research Institute for Animal Production Nitra, Institute of Apiculture Liptovský Hrádok, Dr. J. Gašperíka 599, 033 01 Liptovský Hrádok, Slovak Republic
  • Silvia JAKABOVÁ Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Katarína KLIMENTOVÁ Slovak University of Agriculture in Nitra, Centre of Languages, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Judita LIDIKOVÁ Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Miroslav HABÁN Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic | Comenius University in Bratislava, Faculty of Pharmacy, Odbojárov 10, 832 32 Bratislava, Slovak Republic
  • Miroslav KROČKO Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Slavomíra BELLOVÁ Catholic University in Ružomberok, Faculty of Education, Hrabovská cesta 1A, 034 01 Ružomberok, Slovak Republic
  • Ján TANCIK Ecophyta s.r.o. Nitra, Chrenovská 30, 949 01 Nitra, Slovak Republic
  • †Silvino VARGAS HERNÁNDEZ Universidad Central "Marta Abreu" de Las Villas, Facultad de Ciencias Agropecuarias, Carretera a Camajuaní Km. 5 y ½, Santa Clara 54830, Villa Clara, Cuba
  • Ariany COLÁS SÁNCHEZ Universidad Central "Marta Abreu" de Las Villas, Facultad de Ciencias Agropecuarias, Carretera a Camajuaní Km. 5 y ½, Santa Clara 54830, Villa Clara, Cuba
  • Juan Emilio HERNÁNDEZ GARCÍA Universidad de Sancti Spíritus "José Martí Pérez", Facultad de Ciencias Agropecuarias, Avenida de los Mártires No. 360, CP 60100, Municipio y Provincia, Sancti Spíritus, Cuba
  • Yordanys RAMOS Universidad Central "Marta Abreu" de Las Villas, Facultad de Ciencias Agropecuarias, Carretera a Camajuaní Km. 5 y ½, Santa Clara 54830, Villa Clara, Cuba

DOI:

https://doi.org/10.36547/sjas.708

Keywords:

entomopathogenic bacteria, Galleria mellonella, microscopic fungi, Varroa destructor

Abstract

The aim of the review is to describe a control of pests by microorganisms and its possible effect on bees, other pollinators and beekeeping. Biological control seems to be a natural way to solve the problem with pests in agriculture as an alternative to the use of pesticides. However, the proposed solution must be closely associated with the safety to pollinators, which are an important part of plant production as well as forest ecosystems. Entomopathogenic bacteria (mainly bacilli) and entomopathogenic fungi (e.g., Beauveria bassiana and Metarhizium anisopliae) are often used to suppress the pests in agriculture. The application of entomopathogenic microsporidia is controversial because their frequent representatives are pollinators' pests. Moreover, biocontrol can be applied in the form of pollinator strips near the fields with monocultures resulting in plant and pollinator protection. In some countries, bees are also used as biovectors of control agents for the plant protection in the fields. On the other hand, specific pests pose a threat to bees themselves in the hives. Varoosis is a problem in beekeeping all over the world. The suppression of bee pests using microorganisms was tested. An activity of Beauveria bassiana against Varroa destructor shows promising results. Surprisingly, Beauveria bassiana can be isolated from cadavers of Galleria mellonella larvae, another bee pest, which destroy wax combs. Therefore, understanding of various links between the organisms could be helpful for sustainable beekeeping. Overall, humans are more conscious that everything is connected to each other. Protecting agents designed on natural basis often possess excellent results in practice. Therefore, testing them is more than desirable.

References

aParte, A. C., Sardà Carbasse, J., Meier-Kolthoff, J. P., Reimer, L.C. & Göker, M. (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology, 70, 5607−5612. [cit. 7 Dec 2020]. https://doi.org/10.1099/ijsem.0.004332

bIndex Fungorum [cit. 17 Dec 2020]. Retrieved from http://www.indexfungorum.org/

cThe Global Biodiversity Information Facility [cit. 17 Dec 2020]. Retrieved from https://www.gbif.org/

Abou-Shaara, H. F. & Staroň, M. (2019). Present and future perspectives of using biological control agents against pests of honey bees. Egyptian Journal of Biological Pest Control, 29, 24. https://doi.org/10.1186/s41938-019-0126-8

Ahmad, M., Ali, A. & Ashraf, M. (1994). Biological control of greater wax moth, Galleria mellonella L. Journal of Agricultural Research (Pakistan). Retrieved from https://agris.fao.org

Altinok, H. H., Altinok, M. A. & Koca, A. S. (2019). Modes of action of entomopathogenic fungi. Current Trends in Natural Sciences, 8(16), 117−124. Retrieved from http://www.natsci.upit.ro

Bajko, J. (2020). Predátoři roztoče Varroa destructor. Moderní včelař, 17(7), 17−18.

Balbiani, G. (1882). Sur les microsporidies ou psorospermies des articule's. Comptes rendus de l'Académie des Sciences, 95, 1168−1171.

Barra-Bucarei, L., Iglesias, A. F. & Torres, C. P. (2019). Chapter 11 Entomopathogenic fungi. In B. Souza et al. (Ed), Natural Enemies of Insect Pests in Neotropical Agroecosystems, (pp. 123−136). https://doi.org/10.1007/978-3-030-24733-1_11

Bellutti, N., Gallmetzer, A., Innerebner, G., Schmidt, S., Zelger, R. & Koschier, E. H. (2018). Dietary yeast affects preference and performance in Drosophila suzukii. Journal of Pest Science, 91, 651−660. https://doi.org/10.1007/s10340-017-0932-2

Bjornson, S. & Oi, D. (2014). Microsporidia Biological Control Agents and Pathogens of Beneficial Insects. Nebraska-Lincoln: U.S. Department of Agriculture: Agricultural. Retrieved from https://digitalcommons.unl.edu/usdaarsfacpub/1516

Bombelli, P., Howe, C. J. & Bertocchini, F. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 27(8), R292−R293. https://doi.org/10.1016/j.cub.2017.02.060

Cagáň, Ľ., Tancik, J. & Barta, M. (2005). Impact of native strains of entomopathogenic fungi to maize insect pest. In 11th Diabrotica Subgroup meeting, 10 EPPO ad hoc Panel a FAO Network Group Meeting (pp. 14−17).

Cagáň, Ľ., Tancik, J., Bokor, P. & Uhlík, V. (1995). Control of the European corn borer on maize. Acta fytotechnica, 50, 53−55.

Canning, E. U. (1953). A new microsporidian, Nosema locustae n. sp., from the fat body of the African migratory locust, Locusta migratoria migratorioides R. & F. Parasitology, 43, 287−290. https://doi.org/10.1017/S0031182000018655

Canning, E. U. (1962). Pathogenicity of Nosema locustae Canning. Journal of Insect Pathology, 4, 248−256. https://doi.org/10.1016/0022-2011(86)90128-X

Chaikasem, S. & Na Roi-et, V. (2020). Health Risk Assessment of Pesticide Residues in Vegetables from River Basin Area. Applied Environmental Research, 42(2), 46−61. https://doi.org/10.35762/AER.2020.42.2.4

Chakroun, M., Banyuls, N., Bel, Y., Escriche, B. & Ferré, J. (2016). Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiology and Molecular Biology Reviews, 80(2), 329−350. https//doi.org/10.1128/MMBR.00060-15

Chlebo, R. (2017). Podmienky rozvoja včelárstva na Slovensku. Nitra: Slovenská poľnohospodárska univerzita v Nitre.

Conrad, R. (2013). NATURAL BEEKEEPING Organic Approaches to Modern Apiculture. Vermont: Chelsea Green Publishing.

Čavojský, V., Haragsim, O., Haragsimová, Ľ., Kresák, M. & Mačička, M. (1981). Včelárstvo [Beekeeping]. Bratislava: Príroda.

Dingman, D. W. & Stahly, D. P. (1983). Medium promoting sporulation of Bacillus larvae and metabolism of medium components. Applied and Environmental Microbiology, 46(4), 860−869. https://doi.org/10.1128/aem.46.4.860-869.1983

Ditrich, O. (2021). Pomohou houby v boji proti kleštíkům? Moderní včelař, 18(6), 10−12.

Dutka, A., McNulty, A. & Williamson, S. M. (2015). A new threat to bees? Entomopathogenic nematodes used in biological pest control cause rapid mortality in Bombus terrestris. PeerJ, 3, e1413.

Ehler, L. E. (2006). Perspective Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Management Science, 62, 787−789. https://doi.org/10.1002/ps.1247

European Commission. (2021). Biodiversity: Commission

progress report on EU action to protect pollinators highlights urgency of action. Retrieved from https://ec.europa.eu/

Ewen, A. B. & Mukerji, M. K. (1980). Evaluation of Nosema locustae (Microsporida) as a control agent of grasshopper populations in Saskatchewan. Journal of Invertebrate Pathology, 35, 295−303. https://doi.org/10.1016/0022-2011(80)90165-2

Fisher, T. W. & Garczynski, S. F. (2012). Chapter III Isolation, culture, preservation, and identification of entomopathogenic bacteria of the Bacilli. In L.A. Lacey (Ed), Manual of Techniques in Invertebrate Pathology (pp. 75−100). London: Academic Press.

Foote, G. G., Foote, N. E., Runyon, J. B., Ross, D. W. & Fettig, C. J. (2020). Changes in the summer wild bee community following a bark beetle outbreak in a Douglas-fir forest. Environmental Entomology, 49(6), 1437−1448. https://doi.org/10.1093/ee/nvaa119

Francis, F., Jacquemyn, H., Delvigne, F. & Lievens, B. (2020). From Diverse Origins to Specific Targets: Role of Microorganisms in Indirect Pest Biological Control. Insects, 11(8), 533. https://doi.org/10.3390/insects 11080533

Fuentealba, A., Bauce, É. & Dupont, A. (2015). Bacillus thuringiensis efficacy in reducing spruce budworm damage as affected by host tree species. Journal of Pest Science, 88, 593−603. https://doi.org/10.1007/s10340-014-0629-8

Giacobino, A., Pacini, A., Molineri, A., Cagnolo, N. B., Merke, J., Orellano, E., Bertozzi, E., Masciangelo, G., Pietronave, H. & Signorini, M. (2017). Environment or beekeeping management: What explains better the prevalence of honey bee colonies with high levels of Varroa destructor? Research in Veterinary Science, 112, 1−6. https://doi.org/10.1016/j.rvsc.2017.01.001

Henderson, E. (2020). Farmers highlight work to protect bees and pollinators. Farmers weekly, 13th July 2020 (online). Retrieved from https://www.fwi.co.uk

Hirt, R. P., Logsdon, J. M., Jr., Healy, B., Dorey, M. W., Dolittle, W. F. & Embley, T. M. (1999). Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proceedings of the National Academy of Sciences USA, 96, 580−585. https://doi.org/10.1073/pnas.96.2.580

Hornitzky, M. A. & Anderson, D. L. (2010). Honey bee diseases, Australia and New Zealand Standard Diagnostic Procedures, 2003. Retrieved from http://www.scahls.org.au

Hricáková, N. & Hleba, L. (2019). Entomopatogénne huby – ich význam a využitie [Entomopathogenic fungi – their importance and use]. SciCell Magazín. Retrieved from https://scicell.org

Inglis, G. D., Enkerli, J. & Goettel, M. S. (2012). Chapter VII Laboratory techniques used for entomopathogenic fungi: Hypocreales. In L. A. Lacey (Ed), Manual of Techniques in Invertebrate Pathology (pp. 189−254). London: Academic Press.

Ironside, J. E. (2007). Multiple losses of sex within a single genus of Microsporidia. BMC Evolutionary Biology, 7, 48. https://doi.org/10.1186/1471-2148-7-48

Jakuš, R. & Blaženec, M. (2011). Treatment of bark beetle attacked trees with entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin. Folia Forestalia Polonica. Series A. Forestry, 53(2), 150−155.Retrieved from http://yadda.icm.edu.pl/

James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J., Lumbsch, H. T., Rauhut, A., Reeb, V., Arnold, A. E., Amtoft, A., Stajich, J. E., Hosaka, K., Sung, G. H., Johnson, D., O'Rourke, B., Crockett, M., Binder, M., Curtis, J. M., Slot, J. C., Wang, Z., Wilson, A. W., Schuszler, A., Longcore, J. E., O'Donnell, K., Mozley-Standridge, S., Porter, D., Letcher, P. M., Powell, M. J., Taylor, J. W., White, M. M., Griffith, G. W., Davies, D. R., Humber, R. A., Morton, J. B., Sugiyama, J., Rossman, A. Y., Rogers, J. D., Pfister, D. H., Hewitt, D., Hansen, K., Hambleton, S., Shoemaker, R. A., Kohlmeyer, J., Volkmann-Kohlmeyer, B., Spotts, R. A., Serdani, M., Crous, P. W., Hughes, K. W., Matsuura, K., Langer, E., Langer, G., Untereiner, W. A., Lucking, R., Budel, B., Geiser, D. M., Aptroot, A., Diederich, P., Schmitt, I., Schultz, M., Yahr, R., Hibbett, D. S., Lutzoni, F., McLaughlin, D. J., Spatafora, J. W. & Vilgalys, R. (2006). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 443, 818−822. https://doi.org/10.1038/nature05110

Johnson, D. L. (1997). Nosematidae and other protozoa as agents for control of grasshoppers and locusts: current status and prospects. Memoirs of the Entomological Society of Canada, 171, 375−389. https://doi.org/10.4039/entm129171375-1

Joseph, J. & Sharma, S. (2009). In vitro culture of various species of Microsporidia causing keratitits: Evaluation of three immortalized cell lines. Indian Journal of Medical Microbiology, 27(1), 35−39.

Joshi, N. K., Ngugi, H. K. & Biddinger, D.J. (2020). Bee Vectoring: Development of the Japanese Orchard Bee as a Targeted Delivery System of Biological Control Agents for Fire Blight Management. Pathogens, 9(1), 41. https://doi.org/10.3390/pathogens9010041

Kevan, P. G., Sutton, J. C., Tam, L., Boland, G., Broadbent, B., Thomson, S. V. & Brewer, G. J. (2003). Using pollinators to deliver biological control agents against crop pests. In R. Downer, J. Mueningghoff, G. Volgas (Ed.), Pesticide formulations and delivery systems: Meeting the challenges of the current crop protection industry (pp. 148−153). West Conshohocken, PA: ASTM International. https://doi.org/10.1520/STP11120S

Kevan, P. G., Kapongo, J., Al-mazra'awi, M. & Shipp, L. (2008). Honey bees, bumble bees and biocontrol. In R. R. James, T. L. Pitts-Singer (Ed), Bee pollination in agriculture ecosystems (pp. 65−79). New York: Oxford University Press.

Köhl, J., Booij, K., Kolnaar, R. & Ravensberg, W. J. (2019a). Ecological arguments to reconsider data requirements regarding the environmental fate of microbial biocontrol agents in the registration procedure in the European Union. BioControl, 64, 469−487. https://doi.org/10.1007/s10526-019-09964-y

Köhl, J., Kolnaar, R. & Ravensberg, W. J. (2019b). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Frontiers in Plant Science, 10, 845. https://doi.org/10.3389/fpls.2019.00845

Kwadha, C. A., Ong'amo, G. O., Ndegwa, P. N., Raina, S. K. & Fombong, A. T. (2017). The Biology and Control of the Greatewr Wax Moth, Galleria mellonella. Insects, 8(2), 61. https://doi.org/10.3390/insects8020061

Lacey, L. A. & Siegel, J. P. (2000). Safety and ecotoxicology of entomopathogenic bacteria. In J. F. Charles, A. Delécluse, C. N. L. Roux (Ed), Entomopathogenic Bacteria: from Laboratory to Field Application (pp. 1−21). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-1429-7_14

Lange, C. E. & Cigliano, M. M. (2005). Overview and perspectives on the introduction and establishment of the grasshopper (Orthoptera: Acridoidea) biocontrol agent Paranosema locustae (Canning) (Microsporidia) in the western pampas of Argentina. Vedalia, 12, 61−84.

Lockwood, J. A., Bomar, C. R. & Ewen, A. B. (1999). The history of biological control with Nosema locustae: Lessons for locust management. International Journal of Tropical Insect Science, 19, 333−350. https://doi.org/10.1017/S1742758400018968

Maebe, K., Vanderhaegen, R., Pisman, M., Eeraerts, M., Cottyn, B., Vanhoutte, B. & Smagghe, G. (2021). Distribution of a model biocontrol agent (Serenade® MAX) in apple and pear by mason bees and bumble bees. Agricultural and Forest Entomology, 23(1), 97−103. https://doi.org/10.1111/afe.12396

Mandal, S. K. (2019). Impact of Pest Control Chemicals on Biological Activity of Biocontrol Agents. In N.C. Sahu, A. Mukherjee, A. Ghosal, K. Ray, D. Giri, S. N. Das (Ed), The souvenir of National Seminar on "Agro-Chemical Inputs and Its Extension Approaches Towards Food-Security and Bio-Safety: prospects and Chalanges (AEFS-2019)" (pp. 80−84). Kolkata: Jo Jo Enterprise. Retrieved from https://www.researchgate.net

Mantzoukas, S. & Eliopoulos, P. A. (2020). Endophytic Ento-mopathogenic Fungi: A Valuable Biological Control Tool against Plant Pests. Applied Sciences, 10(1), 360. https://doi.org/10.3390/app10010360

Marchlewicz, A., Guzik, U., Hupert-Kocurek, K., Nowak, A., Wilczyńska, S. & Wojcieszyńska, D. (2017). Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1 (2015b). Environmental Science and Pollution Research, 24(8), 7572−7584. https://doi.org/10.1007/s11356-017-8372-3

McKillup, S. C. & Brown, D. G. (1991). Evaluation of a formulation of Bacillus thuringiensis against waxmoths in stored honeycombs. Australian Journal of Experimental Agriculture, 31(5), 709−711. https://doi.org/10.1071/EA9910709

de Medeiros, F. H. V. & da Silva, J. C. P. (2019). Plant Diseases. In B. Souza, L. Vázquez, R. Marucci (Ed), Natural Enemies of Insect Pests in Neotropical Agroecosystems (pp. 451−466). Cham: Springer. https://doi.org/10.1007/978-3-030-24733-1_36

Medo, J., Medova, J., Michalko, J. & Cagaň, Ľ., (2021). Variability in virulence of Beauveria spp. soil isolates against Ostrinia nubilalis. Journal of Applied Entomology. 145(1−2). 92-103. https://doi.org/10.1111/jen.12806

Mudrončeková, S., Mazáň, M., Nemčovič, M. & Šalamon, I. (2013). Entomopathogenic fungus species Beauveria bassiana (Bals.) and Metarhizium anisopliae (Metsch.) used as mycoinsecticide effective in biological control of Ips typographus (L.). Journal of Microbiology, Biotechnology and Food Sciences, 2(6), 2469−2472. Retrieved from https://www.jmbfs.org/

Mutune, B., Ekesi, S., Niassy, S., Matiru, V., Bii, C. & Maniania, W. K. (2016). Fungal endophytes as promising tools for the management of bean stem maggot Ophiomyia phaseoli on Phaseolus vulgaris. Journal of Pest Science, 89, 993−1001. https://doi.org/10.1007/s10340-015-0725-4

O'Callaghan, M., Glare T. R. & Lacey, L. A. (2012). Chapter IV Bioassay of bacterial entomopathogens against insect larvae. In L.A. Lacey (Ed), Manual of Techniques in Invertebrate Pathology (pp. 101−128). London: Academic Press.

Ondráčková, E. (2015). The use of entomopathogenic fungi in biological control of pests. Acta Fytotechnica et Zootechnica, 18(special), 102−105. https://doi.org/10.15414/afz.2015.18.si.102-105

Pigott, C. R. & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71(2), 255−281. https://doi.org/10.1128/MMBR.00034-06

Poidatz, J., Lopez Plantey, R. J. & Thiéry, D. (2019). A Beauveria bassiana strain naturally parasitizing the bee predator Vespa velutina in France. Entomologia Generalis, 39(2), 73−79. https://doi.org/10.1127/entomologia/2019/0690

Polenogova, O. V., Kabilov, M. R., Tyurin, M. V., Rotskaya, U. N., Krivopalov, A. V., Morozova, V. V., Mozhaitseva, K., Kryukova, N. A., Alikina, T., Kryukov, V. Y. & Glupov, V. V. (2019). Parasitoid envenomation alters the Galleria mellonella midgut microbiota and immunity, thereby promoting fungal infection. Scientific Reports, 9, 4012. https://doi.org/10.1038/s41598-019-40301-6

Rahman, K. A., Barta, M. & Cagáň, Ľ. (2010). Effects of combining Beauveria bassiana and Nosema pyrausta on the mortality of Ostrinia nubilalis. Open Life Sciences 5(4), 472−480. https://doi.org/10.2478/s11535-010-0035-z

Ramadan, M. F. A, Abdel-Hamid, M. M. A., Altorgoman, M. M. F., AlGaramah, H. A., Alawi, M. A., Shati, A. A., Shweeta, H. A. & Awwad, N. S. (2020). Evaluation of pesticide residues in vegetables from the Asir Region, Saudi Arabia. Molecules, 25(1), 205. https://doi:10.3390/molecules25010205

Ramos, Y., Portal, O., Lysøe, E., Meyling, N. V. & Klingen, I. (2017). Diversity and abundance of Beauveria bassiana in soils, stink bugs and plant tissues of common bean from organic and conventional fields. Journal of Invertebrate Pathology, 150, 114−120. https://doi.org/10.1016/j.jip.2017.10.003

Ramos, Y., Taibo, A. D., Jiménez, J. A. & Portal, O. (2020). Endophytic establishment of Beauveria bassiana and Metarhizium anisopliae in maize plants and its effect against Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) larvae. Egyptian Journal of Biological Pest Control, 30(1), 1−6. https://doi.org/10.1186/s41938-020-00223-2

Regaiolo, A., Dominelli, N., Andresen, K. & Heermann, R. (2020). The biocontrol agent and insect pathogen Photorhabdus luminescens interacts with plant roots. Applied and Environmental Microbiology, 86(17), e00891−20. https://doi.org/10.1128/AEM.00891-20

Rosenkranz, P., Aumeier, P. & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103(supplement), S96−S119. https://doi.org/10.1016/j.jip.2009.07.016

Rubio-Infante, N. & Moreno-Fierros, L. (2016). An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals. Journal of Applied Toxicology, 36(5), 630−648. https://doi.org/10.1002/jat.3252

Ruiu, L. (2015). Insect Pathogenic Bacteria in Integrated Pest Management. Insects, 6, 352−367. https://doi.org/10.3390/insects6020352

Schiffer, T. (2017). Handlungsanleitung für artgerechte Bienenhaltung mit Bücherskorpionen. Retrieved from https://beenature-project.com

Shalaby, S. E., Abdou, G. Y., El-Metwally, I. M. & Abou-elella, G. M. (2021). Health risk assessment of pesticide residues in vegetables collected from Dakahlia, Egypt. Journal of Plant Protection Research, 61(3), 254−264. https://doi.org/10.24425/jppr.2021.137951

Sharma, L., Bohra, N., Singh, R. K. & Marques, G. (2019). Potential of Entomopathogenic Bacteria and Fungi. In M. A. Khan, W. Ahmad (Ed), Microbes for Sustainable Insect Pest Management (pp. 115−149). Switzerland AG: Springer Nature. https://doi.org/10.10077/978-3-030-23045-6_4

Shimanuki, H., & Knox, D. A. (2000). Diagnosis of Honey Bee Diseases. Washington: United States Department of Agriculture.

Singh, A., Bhardwaj, R. & Singh, I. K. (2019). Biocontrol Agents: Potential of Biopesticides for Integrated Pest Management. In B. Giri, R. Prasad, Q. S. Wu, A. Varma (Eds), Biofertilizers for Sustainable Agriculture and Environment [Online]. Soil Biology, vol. 55 (pp. 413−433). https://doi.org/10.1007/978-3-030-18933-4_19

Singh, S., Singh, A. P., Chaurasiya, D. K., Mukherjee, S. & Mondal, G. (2020). Entomopathogenic Fungi as Biocontrol Agents in Agriculture. Biotica Research Today, 2(5 spl.), 264−266. Retrieved from https://bioticainternational.com

Smith, T. L. (1938). Genetical studies on the wax moth Galleria mellonella Linn. Genetics, 23(1), 115−137. Retrieved from https://www.ncbi.nlm.nih.gov

Solter, L. F. & Maddox, J. V. (1998). Physiological host specificity of microsporidia as an indicator of ecological host specificity. Journal of Invertebrate Pathology, 71, 207−216. https://doi.org/10.1006/jipa.1997.4740

Solter, L. F. & Hajek, A. E. (2009). Control of gypsy moth, Lymantria dispar, in North America since 1878. In A. E. Hajek, T. R. Glare, M. O'Callaghan (Eds.), Use of Microbes for Control and Eradication of Invasive Arthropods (pp. 181−212). Dordrecht: Springer Science + Business Media B.V.

Solter, L. F., Becnel J. J. & Oi, D. H. (2012). Microsporidian Entomopathogens. In Insect Pathology, [Online PDF] (pp. 221−252). https://doi.org/10.1016/B978-0-12-384984-7.00007-5

Sperandio, G., Simonetto, A., Carnesecchi, E., Costa, C., Hatjina, F., Tosi, S. & Gilioli, G. (2019). Beekeeping and honey bee colony health: A review and conceptualization of beekeeping management practices implemented in Europe. Science of the Total Environment, 696, 133795. https://doi.org/10.1016/j.scitotenv.2019.133795

Staroň, M. (2020). Ovocie a včely. E-newsletter Ústavu včelárstva, 3(3), 7−9. Retrieved from https://mail.cvzv.sk/~vcela_hradok/nl/Nr3c3.pdf

Steinhauer, N., Kulhanek, K., Antúnez, K., Human, H., Chantawannakul, P., Chauzat, M. P. & Van Engelsdorp, D. (2018). Drivers of colony losses. Current Opinion in Insect Science, 26, 142−148. https://doi.org/10.1016/j.cois.2018.02.004

Stenberg, J. A., Heil, M., Åhman, I. & Björkman, C. (2015). Optimizing Crops for Biocontrol of Pests and Disease. Trends in Plant Science, 20(11), 698−712. https://doi.org/10.1016/j.tplants.2015.08.007

Tancik, J. & Cagáň, Ľ. (1997). Control of the European corn borer, Ostrinia nubilalis Hbn., on sweet corn with chemical and biological insecticides. In Proceedings of the XIV. Slovak and Czech Plant Protection Conference in Nitra (pp. 281−282).

Tancik, J. & Cagáň, Ľ. (1998). Control of the European corn borer (Ostrinia nubilalis Hbn.) with chemical and biological insecticides. Agriculture, Journal for Agricultural Sciences, 44(2), 100−109.

Tirjaková, E. (2010). Protistológia. Bratislava: Univerzita Komenského, Prírodovedecká fakulta, Katedra zoológie.

Vitali-di Castri, V. (1973). Biogeography of Pseudoscorpions in the Mediterranean Regions of the World. In F. di Castri, H.A. Mooney (Ed), Mediterranean Type Ecosystems. Ecological Studies (Analysis and Synthesis), vol 7. Berlin: Springer. https://doi.org/10.1007/978-3-642-65520-3_17

Vondruška, J., Kročáková, J. & Landa, Z. (2019). Entomopatogénne huby v integrovanej ochrane rastlín [Entomopathogenic fungi in integrated plants' protection]. Naše pole. Retrieved from https://nasepole.sk

Yaremenko, I. A., Syromyatnikov, M. Y., Radulov, P. S., Belyakova, Y. Y., Fomenkov, D. I., Popov, V. N. & Terent'ev, A. O. (2020). Cyclic Synthetic Peroxides Inhibit Growth of Entomopathogenic Fungus Ascosphaera apis without Toxic Effect on Bumblebees. Molecules, 25(8), 1954. https://doi.org/10.3390/molecules25081954

Zibaee, A. & Malagoli, D. (2020). The potential immune alterations in insect pests and pollinators after insecticide exposure in agroecosystem. Invertebrate Survival Journal, 17(1), 99−107. https://doi.org/10.25431/1824-307X/isj.v0i0.99-107

Zimmermann, G. (2007). Review on safety of the entomo-pathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17(6), 553−596. https://doi.org/10.1080/09583150701309006

Zúñiga-Venegas, L., Saracini, C., Pancetti, F., Muñoz-Quezada, M. T., Lucero, B., Foerster, C. & Cortés, S. (2021). Exposición a plaguicidas en Chile y salud poblacional: urgencia para la toma de decisiones. Gaceta Sanitaria, 35(5), 480−487. https://doi.org/10.1016/j.gaceta.2020.04.020

Downloads

Published

2022-10-24

Issue

Section

Reviews

Most read articles by the same author(s)